Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T23:29:16.732Z Has data issue: false hasContentIssue false

Simulation code for ICF including radiative energy transfer

Published online by Cambridge University Press:  09 March 2009

G. Velarde
Affiliation:
Instituto de Fusión Nuclear (DENIM), José Gutiérrez Abascal, 2; 28006 Madrid, Spain
J. M. Aragonés
Affiliation:
Instituto de Fusión Nuclear (DENIM), José Gutiérrez Abascal, 2; 28006 Madrid, Spain
J. J. Honrubia
Affiliation:
Instituto de Fusión Nuclear (DENIM), José Gutiérrez Abascal, 2; 28006 Madrid, Spain
J. M. Martínez-Val
Affiliation:
Instituto de Fusión Nuclear (DENIM), José Gutiérrez Abascal, 2; 28006 Madrid, Spain
E. Mínguez
Affiliation:
Instituto de Fusión Nuclear (DENIM), José Gutiérrez Abascal, 2; 28006 Madrid, Spain
J. L. Ocaña
Affiliation:
Instituto de Fusión Nuclear (DENIM), José Gutiérrez Abascal, 2; 28006 Madrid, Spain
J. M. Perlado
Affiliation:
Instituto de Fusión Nuclear (DENIM), José Gutiérrez Abascal, 2; 28006 Madrid, Spain

Abstract

New improvements in the atomic physics models for numerically treating high density plasmas, typical of ICF, together with new algorithms for multigroup radiation transport are presented.

The performance of Large High Aspect Ratio Targets has been numerically determined by using those models implemented in a one-dimensional hydro code. Some differences from experiments are identified, and a comparative analysis with other numerical codes is given.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afanas'ev, Yu. et al. 1976 JETP Lett. 23, 566.Google Scholar
Alcouffe, R. E., Clark, B. A. & Larsen, E. W. 1985 Multiple Time Scales, Academic Press.Google Scholar
Argo, M. F. & Huebner, W. F. 1976 J. Quant. Spectrosc. Radiat. Transfer 16, 1091.Google Scholar
Boris, J. P. 1976 NRL Memorandum Report 3237.Google Scholar
Honrubia, J. J. & Aragones, J. M. 1986 Nucl. Sci. Eng. 93, 368.Google Scholar
Honrubia, J. J. & Morel, J. E. 1987 Proc. Int. Topi. Mtg. on Adv. Reac. Mat. and Comp. 1, 377.Google Scholar
Huebner, W. F., et al. 1977 Los Alamos National Laboratory Report No LA-6760-M.Google Scholar
Larsen, E. W., Morel, J. E. & Miller, W. F. 1987 J. Comput Phys, 69, 2.CrossRefGoogle Scholar
Minguez, E., et al. 1988 Laser and Particle Beams 6, part 2, 265.CrossRefGoogle Scholar
Morel, J. E., Larsen, E. W. & Matzen, M. K. 1985 J. Quant. Spectrosc. Radiat. Transfer 34, 3.CrossRefGoogle Scholar
Murakami, M. & Nishihara, K. 1983 ILE Quarterly Report, ILE-QPR-83–6, 34.Google Scholar
Perez-Torres, J. L. 1987 Master Thesis, Universidad Politéchnica de Madrid.Google Scholar
Perlado, J. M. 1986 private communication of unpublished work performed during visiting scientist stay at ILE.Google Scholar
Takabe, H. 1987 ILE Quarterly Report, ILE-QPR-86–20, 3.Google Scholar
Velarde, G., et al. 1984 European Space Agency & Scientific and Technical Publication Branch 207, 201.Google Scholar
Velarde, G. 1986a et al., Laser & Particle Beams 4, 349.CrossRefGoogle Scholar
Velarde, G., et al. 1986b DENIM Annual Report 1985.Google Scholar
Velarde, P. M. 1987 DENIM Annual Report 1986.Google Scholar
Yamanaka, C., et al. 1984 Tenth Int. Conf. Plasma Phys. Contr. Nucl. Fus. Res.London, IAEA-CN-44/B-1–1.Google Scholar
Yamanaka, C., et al. 1986 Eleventh Int. Conf. Plasma Phys. Contr. Nucl. Fus. Res.Kyoto, IAEA-CN-47/B-1–4.Google Scholar