Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T16:36:50.687Z Has data issue: false hasContentIssue false

Slab model for Rayleigh–Taylor instability

Published online by Cambridge University Press:  09 March 2009

A. Estévez
Affiliation:
Escuela Universitaria de Ingenieria Técnica Aeronáutica, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Abstract

A modelization of the Rayleigh–Taylor instability, in the context of inertial confinement fusion, is made by means of a planar slab model whose main features are a sharp ablation front separating the slab and the expanding corona, absorption of constant intensity laser light at a critical surface, profiles for background flow variables consistent with hydrodynamic equations, and heat conduction present in the expanding corona. A sharp ablation front assumption (density at the critical surface is much less than the slab density, ρcs ≪ 1) supposes that the ablated mass is small, so the model is valid for thick targets. Two main regimes are modelized, subsonic and sonic absorption. The growth rate of the instability is obtained, and its variation with kD and kxc is studied (k = perturbation wavenumber; D = slab thickness; xc = ablation to critical surfaces distance). The model shows stabilization over the classical Rayleigh–Taylor growth rate (γ = √kg). The stabilization mechanism is based on heat conduction near the ablation front.

Type
Regular Papers
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albrecht, J. et al. (eds) 1982 Numerical Treatment of Free Boundary Value Problems (Birkhäuser Verlag, Basel).Google Scholar
Baker, L. 1978 Phys. Fluids 21, 295.CrossRefGoogle Scholar
Baker, L. 1983a Phys. Fluids 26, 627.CrossRefGoogle Scholar
Baker, L. 1983b Phys. Fluids 26, 950.CrossRefGoogle Scholar
Betti, R. et al. 1993 Phys. Rev. Lett. 71, 3131.CrossRefGoogle Scholar
Bodner, S.E. 1974 Phys. Rev. Lett. 33, 761.CrossRefGoogle Scholar
Book, D.L. 1992 Plasma Phys. Contr. Fusion 34, 737.CrossRefGoogle Scholar
Bud'ko, A.B. & Libermann, M.A. 1992 Phys. Rev. Lett. 68, 178.CrossRefGoogle Scholar
Bychkov, V.V. et al. 1991 Zh. Eksp. Teor. Fiz. 73, 642 [Sov. Phys. JETP 100, 1162].Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford) pp. 428, 477 [Reprint: Dover, New York, 1981].Google Scholar
Desselberger, M. et al. 1993 Phys. Fluids B 5, 896.CrossRefGoogle Scholar
Edwards, D.A. et al. 1991 Interfacial Transport Processes and Rheology (Butterworth-Heinemann, Boston).Google Scholar
Emery, M.H. et al. 1982 Appl. Phys. Lett. 41, 808.CrossRefGoogle Scholar
Emery, M.H. et al. 1984 Phys. Fluids 27, 1338.CrossRefGoogle Scholar
Emery, M.H. et al. 1988 Phys. Fluids 31, 1007.CrossRefGoogle Scholar
Gardner, J.H. et al. 1991 Phys. Fluids B 3, 1070.CrossRefGoogle Scholar
Glendinning, S.G. et al. 1992 Phys. Rev. Lett. 69, 1201.CrossRefGoogle Scholar
Kilkenny, J.D. 1990 Phys. Fluids B 2, 1400.CrossRefGoogle Scholar
Kilkenny, J.D. 1994 Phys. Plasmas 1, 1379.CrossRefGoogle Scholar
Kull, H.J. 1988 Phys. Fluids B 1, 170.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1989 Fluid Mechanics(Pergamon, New York).Google Scholar
Manheimer, W.M. & Colombant, D.G. 1984 Phys. Fluids 27, 983.CrossRefGoogle Scholar
Max, C.E. et al. 1981 Phys. Fluids 24, 2098.Google Scholar
McCrory, R.L. et al. 1981 Phys. Rev. Lett. 46, 336.CrossRefGoogle Scholar
McCrory, R.L. et al. 1991 Computer Applications in Plasma Science and Engineering, Drobot, A.T., ed. (Springer-Verlag, New York).Google Scholar
Mikaelian, K.O. 1982 Phys. Rev. Lett. 48, 1365.CrossRefGoogle Scholar
Mikaelian, K.O. 1989 Phys. Rev. A 40, 4801.CrossRefGoogle Scholar
Mikaelian, K.O. 1990 Phys. Rev. A 42, 4944.CrossRefGoogle Scholar
Mikaelian, K.O. 1992 Phys. Rev. A 46, 6621.CrossRefGoogle Scholar
Remington, B.A. et al. 1992 Phys. Fluids B 4, 967.CrossRefGoogle Scholar
Remington, B.A. et al. 1993 Phys. Fluids B 5, 2589.CrossRefGoogle Scholar
Sanmartin, J.R. et al. 1985 Plasma Phys. Cont. Fusion 27, 983.CrossRefGoogle Scholar
Sanz, J. 1994 Phys. Ref. Lett. 73, 2700.CrossRefGoogle Scholar
Shen, S.S. 1993 A Course on Nonlinear Waves (Kluwer Academic Publishers, Dordrecht).CrossRefGoogle Scholar
Tabak, M. et al. 1990 Phys. Fluids B 2, 1007.CrossRefGoogle Scholar
Takabe, H. et al. 1983 Phys. Fluids 26, 2299.CrossRefGoogle Scholar
Takabe, H. et al. 1985 Phys. Fluids 28, 3676.CrossRefGoogle Scholar
Taylor, G.I. 1950 Proc. R. Soc. London A 201, 192.Google Scholar
Verdon, C.P. et al. 1982 Phys. Fluids 25, 1653.CrossRefGoogle Scholar
Wrobel, L.C. & Brebbia, C.A. (eds) 1993 Computational Methods for Free and Moving Boundary Problems in Heat and Fluid Flow (Elsevier, London).Google Scholar