Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T03:52:39.593Z Has data issue: false hasContentIssue false

Stochastic heating in ultra high intensity laser-plasma interaction: Theory and PIC code simulations

Published online by Cambridge University Press:  08 June 2006

D. PATIN
Affiliation:
Commissariat l'Energie Atomique, DAM-Lle de France, Département de Physique Théorique et Appliquée, Bruyéres-le-Châtel, France
E. LEFEBVRE
Affiliation:
Commissariat l'Energie Atomique, DAM-Lle de France, Département de Physique Théorique et Appliquée, Bruyéres-le-Châtel, France
A. BOURDIER
Affiliation:
Commissariat l'Energie Atomique, DAM-Lle de France, Département de Physique Théorique et Appliquée, Bruyéres-le-Châtel, France
E. D'HUMIÈRES
Affiliation:
Commissariat l'Energie Atomique, DAM-Lle de France, Département de Physique Théorique et Appliquée, Bruyéres-le-Châtel, France

Abstract

In the first part, the theoretical model of the stochastic heating effect is presented briefly. Then, a numerical resolution of the Hamilton equations highlights the threshold of the stochastic effect. Finally, Particle-In-Cell (PIC) code simulations results, for experimentally relevant parameters, are presented in order to confirm the acceleration mechanism predicted by the one-particle theoretical model. This paper gives the conditions on the different experimental parameters in order to have an optimization of the stochastic heating.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bourdier, A. & Patin, D. (2005). Dynamics of a charged particle in a linearly polarized travelling wave—Hamiltonian approach to laser-matter interaction at very high intensities. Eur. Phys. J. D 32, 361376.Google Scholar
Bourdier, A., Patin, D. & Lefebvre, E. (2005). Stochastic heating in ultra high intensity laser-plasma interaction. Phys. D 206, 131.Google Scholar
Chirikov, B. (1979). A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263379.Google Scholar
Lefebvre, E., Cochet, N., Fritzler, S., Malka, V., Aléonard, M.-M., Chemin, J.-F., Darbon, S., Disdier, L., Faure, J., Fedotoff, A., Landoas, O., Malka, G., Méot, V., Morel, P., Rabec Le Gloahec, M., Rouyer, A., Rubbelynck, Ch., Tikhonchuk, V., Wrobel, R., Audebert, P. & Rousseaux, C. (2003). Electron and photon production from relativistic laser-plasma interactions. Nucl. Fusion 43, 629633.Google Scholar
Patin, D., Bourdier, A. & Lefebvre, E. (2005). Stochastic heating in ultra high intensity laser-plasma interaction. Laser Part. Beams 23, 297302.Google Scholar
Pommier, L. & Lefebvre, E. (2003). Simulations of energetic proton emission in laser-plasma interaction. Laser Part. Beams 21, 573581.Google Scholar
Rax, J. M. (1992). Compton harmonic resonances, stochastic instabilities, quasilinear diffusion, and collisionless damping with ultra-high-intensity laser waves. Phys. Fluids B 4, 3962.Google Scholar
Sheng, Z.-M., Mima, K., Sentoku, Y., Jovanovic, Taguchi, T., Zhang, J., &Meyer-ter-Vehn, J. (2002). Stochastic heating and acceleration of electrons in colliding laser fields in plasma. Phys. Rev. Lett. 88, 055004.Google Scholar
Sheng, Z.-M., Mima, K., Zhang, J. & Meyer-ter-Vehn, J. (2004). Efficient acceleration of electrons with counterpropagating intense laser pulses in vaccum and underdense plasma. Phys. Rev. E. 69, 016407.Google Scholar
Tabor, M. (1989). Chaos and Integrability in Nonlinear Dynamics. New York: John Wiley and Sons.
Tajima, T., Kishimoto, Y. & Masaki, T. (2001). Cluster fusion. Phys. Scripta T89, 4548.Google Scholar