Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T02:15:31.134Z Has data issue: false hasContentIssue false

Stopping Power in Strongly Coupled Plasmas

Published online by Cambridge University Press:  09 March 2009

K. Morawetz
Affiliation:
Max-Planck-Gesellschaft, AG Theoretische Vielteilchenphysik, an der Universität Rostock, 18055 Rostock, Germany

Abstract

The stopping power of dense nonideal plasmas is calculated in different approximations. The T-matrix approximation for binary collisions is compared with the random phase approximation (RPA) approximation for dielectric fluctuations. Within a microscopic model, the dynamical evolution of the velocity of the projectile is calculated. It reproduces well experimental values for the stopping of fast heavy ions. Further improvements due to correlations are discussed. Both concepts, cluster decomposition and memory, are compared and it is found that they lead to the same quantum virial corrections of the Beth-Uhlenbeck type in equilibrium. However, memory in the kinetic equation causes an additional renormalization of the effective energy transfer in nonequilibrium.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bosser, J. (Ed.) 1994 Geneva, CERN.Google Scholar
Bret, A. & Deutsch, C. 1993 Phys. Rev. E 47, 1276.CrossRefGoogle Scholar
Brouwer, H.H. et al. 1990a Contrib. Plasma Phys. 30, 263.CrossRefGoogle Scholar
Brouwer, H.H. et al. 1990b Contrib. Plasma Phys. 30, 369.CrossRefGoogle Scholar
Deutsch, C. 1992 Laser Part. Beams 10, 217.CrossRefGoogle Scholar
Deutsch, C. 1995 Phys. Rev. E 51, 619.CrossRefGoogle Scholar
Deutsch, C. & Tahir, N.A. 1992 Phys. Fluids B 4, 3735.CrossRefGoogle Scholar
Hofmann, I. 1994 In Proceedings of the Workshop on Beam Cooling and Related Topics, Montreux 1993, Bosser, J., ed. (CERN, Geneva) p. 330.Google Scholar
Hoffmann, D.H.H. et al. 1990 Phys. Rev. A 42, 2313.CrossRefGoogle Scholar
Hoffmann, D.H.H. et al. (Eds.) 1995 High Energy Density in Matter, GSI Darmstadt.Google Scholar
Ichimaru, S. 1973 Basic Principles in Plasma Physics (Benjamin, Reading, MA).Google Scholar
Jacoby, J. et al. 1995 Phys. Rev. Lett. 74, 1550.CrossRefGoogle Scholar
Klakow, D. et al. 1994. Phys. Lett. A 192, 55.CrossRefGoogle Scholar
Kraeft, W.D. & Strege, B. 1988 Physica A 149, 313.CrossRefGoogle Scholar
Kraeft, W.D. et al. 1986 Quantum Statistics of Charged Particle Systems (Akademie Verlag, Berlin).CrossRefGoogle Scholar
Morawetz, K. 1994 Phys. Rev. E 50, 4625.CrossRefGoogle Scholar
Morawetz, K. & Röpke, G. 1995 Phys. Rev. E 51, 4246.CrossRefGoogle Scholar
Morawetz, K. & Röpke, G. 1996 Phys. Rev. E 54, 4134.CrossRefGoogle Scholar
Morawetz, K. et al. 1994 Phys. Lett. A 190, 96.CrossRefGoogle Scholar
Peter, T. & Meyer-Ter-Vehn, J. 1991 Phys. Rev. A 43, 1998.CrossRefGoogle Scholar
Röpke, G. & Redmer, R. 1989 Phys. Rev. A 39, 907.CrossRefGoogle Scholar
Tahir, N.A. et al. 1995 Plasma Phys. Control. Fusion 37, 447.CrossRefGoogle Scholar
Zwicknagel, G. 1994 Ph.D. thesis, University Erlangen.Google Scholar
Zwicknagel, G. et al. 1993 Nuovo Cimento A 106 A, 1857.CrossRefGoogle Scholar
Zwicknagel, G. et al. 1995 Laser Part. Beams 13, 311.CrossRefGoogle Scholar