Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T14:21:38.591Z Has data issue: false hasContentIssue false

Thermal defocusing of intense hollow Gaussian laser beams in atmosphere

Published online by Cambridge University Press:  17 June 2013

Ashutosh Sharma
Affiliation:
Department of Education Building, Lucknow University, Lucknow, India
Mahendra Singh Sodha*
Affiliation:
Department of Education Building, Lucknow University, Lucknow, India
Shikha Misra
Affiliation:
Centre of Energy Studies, Indian Institute of Technology, New Delhi, India
S.K. Mishra
Affiliation:
Institute for Plasma Research (IPR), BHAT, Gandhinagar, India
*
Address correspondence and reprint requests to: Mahendra Singh Sodha, Department of Education Building, Lucknow University, Lucknow – 226 007, India. E-mail: msodha@rediffmail.com

Abstract

In this paper, the authors have presented a paraxial theory for propagation of (1) Gaussian (2) dark hollow Gaussian high power laser beams in the atmosphere, considering the nonlinearity arising from the temperature variation along the wave-front. Specifically, the focusing parameter for both beams has been evaluated as a function of distance and initial beam power and width (corresponding to radiation of wavelengths 1.045 µ, 1.625 µ, and 2.141 µ in the water absorption window) for the maritime, desert, rural, and urban environments as modeled at NRL; the results have been presented in the dimensionless form. It is seen that in all four environments a dark hollow beam defocuses less than the corresponding Gaussian beam of same radius and power. It is suggested that this conclusion based on the paraxial theory be verified by numerical simulation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968 a). Self focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609636.CrossRefGoogle Scholar
Akhmanov, S.A., Krindach, D.P., Migulier, A.V., Sukhorukov, A.P. & Khokhlov, R.V. (1968 b). Non stationary nonlinear optical effect and ultra short light pulse formation. IEEE J. Quan. Electron. QE-4, 568605.CrossRefGoogle Scholar
Armstrong, R.L. (1984). Interactions of absorbing aerosols with intense light beams. J. Appl. Phys. 56, 21422153.CrossRefGoogle Scholar
Brown, R.T. & Smith, D.C. (1975). Aerosol-induced thermal blooming. J. Appl. Phys. 46, 402405.CrossRefGoogle Scholar
Bodhaine, B.A. (1995). Aerosol absorption measurements at Barrow, Mauna Loa, and South Pole. J. Geophys. Res. 100, 89678975.CrossRefGoogle Scholar
Cai, Y., Lu, X. & Lin, Q. (2003). Hollow Gaussian beam and their propagation properties. Opt. Lett. 28, 10841086.CrossRefGoogle ScholarPubMed
Doss-Hammel, S.D., Tsintrkidis, D., Merrit, D. & Fontana, J. (2004). Atmospheric characterization for high energy laser beam propagation in the maritime environment. Proc. SPIE 208, 5552.CrossRefGoogle Scholar
Fried, D.L. (1974). Illuminated square-aperture high-power laser transmitter. Appl. Opt. 13, 989991.CrossRefGoogle ScholarPubMed
Herman, R.M. & Wiggins, T.A. (1991). Production and uses of diffraction less beams. J. Opt. Soc. Am. A 8, 932942.CrossRefGoogle Scholar
Kaushik, S.C., Tripathi, V.K. & Sharma, R.P. (1975). Thermal self-focusing of a laser beam in an absorbing moving medium: convection effects. Opt. Acta 22, 821830.Google Scholar
Kuga, T., Torii, Y., Shiokawa, N., Hirano, T., Shimizu, Y. & Sasada, H. (1997). Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett. 78, 47134716.CrossRefGoogle Scholar
Lee, H.S., Atewart, B.W., Choi, K. & Fenichel, H. (1994). Holographic non–diverging hollow beams. Phys. Rev. A 49, 49224927.CrossRefGoogle Scholar
Misra, S. & Mishra, S.K. (2009). Focusing of dark hollow Gaussian electromagnetic beam in a plasma with relativistic-ponderomotive regime. Prog. Electromagn. Res. B 16, 291309.CrossRefGoogle Scholar
Ovchinnikov, Yu.B., Manek, I. & Grimm, R. (1997). Surface trap for Cs. atoms based on evanescent-wave cooling. Phys. Rev. Lett. 79, 22252228.CrossRefGoogle Scholar
Penano, J., Sprangle, P., Hafizi, B., Ting, A., Gordon, D.F. & Kapetanakos, C.A. (2004). Propagation of ultra-short, intense laser pulses in air. Phys. Plasmas 11, 28652874.CrossRefGoogle Scholar
Schmitt, Mark J. (2003). Mitigation of thermal blooming and diffraction effects with high-power laser beams, Opt. Soc. Am. B 20, 719724.CrossRefGoogle Scholar
Soding, J., Grimm, R. & Ovchinnikov, Yu. B. (1995). Gravitational laser trap for atoms with evanescent-wave cooling, Opt. Commun. 119, 652662.CrossRefGoogle Scholar
Song, Y., Milam, D. & Hill, W.T. (1999). Long narrow all-light atom guide. Opt. Lett. 24, 18051807.CrossRefGoogle ScholarPubMed
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1974). Self Focusing of Laser Beams in Dielectrics, Semiconductors and Plasmas. Delhi: Tata-McGraw-Hill.Google Scholar
Sodha, M.S., Tripathi, V.K. & Ghatak, A.K. (1976). Self focusing of laser beams in plasmas and semiconductors. Prog. Opt. 13, 169265.CrossRefGoogle Scholar
Sodha, M.S., Mishra, S.K. & Misra, S. (2009 a). Focusing of dark hollow Gaussian electromagnetic beams in a plasma. Laser and Part. Beam 27, 5768.CrossRefGoogle Scholar
Sodha, M.S., Mishra, S.K. & Misra, S. (2009 b). Focusing of dark hollow Gaussian electromagnetic beam in a magneto plasma. J. Plasma Phys. 75, 731748.CrossRefGoogle Scholar
Sprangle, P., Penano, J. & Hafizi, B. (2002). Propagation of intense short laser pulses in the atmosphere. Phys. Rev. E 66, 046418/1–20.CrossRefGoogle ScholarPubMed
Sprangle, P., Penaus, J. & Hafizi, B. (2005). Optimum wavelength and power efficient laser propagation in various atmospheric environments. Report No. NRL/MR/6790-05-8907. Washington, DC: Naval Research Laboratory.Google Scholar
Wang, X. & Littman, M.G. (1993). Laser cavity for generation of variable radius rings of light. Opt. Lett. 18, 767770.CrossRefGoogle ScholarPubMed
Weiss, J.D. & McInnis, W.H. (1980). Thermal blooming: Round beam vs square beam. Appl. Opt. 19, 3133.CrossRefGoogle ScholarPubMed
Yin, J., Zhu, Y., Wang, W., Wang, Y. & Jhe, W. (1998). Optical potential for atom guidance in a hollow laser beam. J. Opt. Soc. Am. B 15, 2533.CrossRefGoogle Scholar
Xu, X., Wang, Y. & Jhe, W. (2002). Theory of atom guidance in a hollow laser beam: Dressed atom approach. J. Opt. Soc. Am. B 17, 10391050.CrossRefGoogle Scholar
Yin, J., Gao, W. & Zhu, Y. (2003). Propagation of various dark hollow beams in a turbulent atmosphere. Prog. Opt. 44, 119204.CrossRefGoogle Scholar
York, A.G., Milchberg, H.M., Palastro, J.P. & Antonsen, T.M. (2008). Direct acceleration of electrons in a corrugated plasma waveguide. Phys. Rev. Lett. 100, 19500/1–7.CrossRefGoogle Scholar