Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-01T07:26:55.154Z Has data issue: false hasContentIssue false

Development of advanced fuel inertial fusion targets

Published online by Cambridge University Press:  09 March 2009

N.A. Tahir
Affiliation:
Physikalisches Institut, Universität Erlangen, 91058 Erlangen, Germany
D.H.H. Hoffmann
Affiliation:
Physikalisches Institut, Universität Erlangen, 91058 Erlangen, Germany

Abstract

This paper discusses the implications of using different fuels, including pure deuterium, deuterium–tritium, deuterium–helium3, and proton–boron11, on safety and environmental compatibility of the fusion reactor, as well as on the driver requirements. Due to present-day technology limitations, it seems likely that the first generation of the fusion reactors will be based on a deuterium–tritium cycle. Such a scheme, however, would pose serious problems, including neutron activation and tritium handling. We show that by developing low-level tritium inertial fusion targets, one may substantially reduce the daily use of tritium in the reactor that may ultimately lead to a reduction in the overall tritium inventory in the power plant. Such reduced tritium targets will still generate sufficient energy to run the power plant economically.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badger, B. et al. 1981 Kernforschungszentrum Karlsruhe Rep. KfK-3202.Google Scholar
Basko, M.M. 1990 Nucl. Fusion 30, 2443.CrossRefGoogle Scholar
Bodner, S.J. 1981 J. Fusion Energy 1, 219.CrossRefGoogle Scholar
Duderstadt, J.J. & Moses, G.H. 1981 Inertial Confinement Fusion (John Wiley & Sons, New York).Google Scholar
Harris, D.B. & Miley, G.H. 1988 Nucl. Fusion 28, 25.CrossRefGoogle Scholar
Kang, K.H. et al. 1993 Nucl. Fusion 33, 17.CrossRefGoogle Scholar
Kawata, S. & Nakashima, H. 1992 Laser Part. Beams 10, 479.CrossRefGoogle Scholar
Kawata, S. et al. 1982 J. Phys. Soc. Japan 51, 3018.CrossRefGoogle Scholar
Kidder, R.E. 1979 Nucl. Fusion 19, 223.CrossRefGoogle Scholar
Kulcinski, G. & Santarius, J. 1989 Fusion Technol. 15, 1233.CrossRefGoogle Scholar
McDonnel Douglas Aerospace Team 1992 Doe/Er-54101.Google Scholar
Meier, W.R. et al. 1992 Doe/54100–1.Google Scholar
Miley, G.J. 1981 Laser Interaction and Related Plasma Phenomena (Plenum Press, New York), Vol. 5, p. 313.Google Scholar
Miley, G.J. 1988 Rev. Sci. lnstr. A271, 197.Google Scholar
Miley, G.J. 1989 Nucl. lnstr. Meth. A278, 281.CrossRefGoogle Scholar
Moir, R.W. 1991 Fusion Technol. 19, 617.CrossRefGoogle Scholar
Shiba, T. et al. 1987 Nucl. Fusion 27, 589.CrossRefGoogle Scholar
Skupski, S. 1978 Nucl. Fusion 18, 843.CrossRefGoogle Scholar
Tahir, N.A. & Hoffmann, D.H.H. 1994 Fusion Eng. Design 24, 413.CrossRefGoogle Scholar
Tahir, N.A. & Hoffmann, D.H.H. 1996 Fusion Technol. 29, 171.CrossRefGoogle Scholar
Tahir, N.A. & Long, K.A. 1983 Nucl. Fusion 23, 887.CrossRefGoogle Scholar
Tahir, N.A. et al. 1986 J. Appl. Phys. 60, 898.CrossRefGoogle Scholar
Tahir, N.A. et al. 1991 Phys. Lett. 172 A, 162.Google Scholar
Tahir, N.A. et al. 1992 Nucl. Fusion 32, 3735.CrossRefGoogle Scholar
Weyrich, K. & Hoffmann, D.H.H. 1996 Fusion Eng. Design 3233, 127.CrossRefGoogle Scholar
Wittenberg, L.J. et al. 1986 Fusion Technol. 10, 167.CrossRefGoogle Scholar