Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T07:39:25.376Z Has data issue: false hasContentIssue false

Effect of amplified spontaneous emission and parasitic oscillations on the performance of cryogenically-cooled slab amplifiers

Published online by Cambridge University Press:  23 August 2013

Magdalena Sawicka*
Affiliation:
HiLASE Project, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
Martin Divoky
Affiliation:
HiLASE Project, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Antonio Lucianetti
Affiliation:
HiLASE Project, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Tomas Mocek
Affiliation:
HiLASE Project, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
*
Address correspondents and reprint requests to: Magdalena Sawicka, Institute of Physics, AS CR, Na Slovance 2,182 21 Prague, Czech Republic. E-mail: sawicka@fzu.cz

Abstract

We present a three-dimensional code for the optimization of energy storage, heat deposition, and amplification in square-shaped laser slabs and multi-slab laser amplifiers. The influence of the slab dimensions, slab face and edge reflectivities, pump parameters, and operating temperature on amplified spontaneous emission and stored energy has been investigated. The multi-slab and single-slab configurations are compared, analyzing in detail the influence of the absorption cladding for the suppression of amplified spontaneous emission radiation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albach, D., Chanteloup, J.C. & le Touze, G. (2009). Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs. Opt. Express 17, 37923801.CrossRefGoogle ScholarPubMed
Banerjee, S., Ertel, K., Mason, P.D., Phillips, P.J., Siebold, M., Loeser, M., Hernandez-Gomez, C. & Collier, J.L. (2012). High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier. Opt. Lett. 37, 21752177.CrossRefGoogle Scholar
Brown, D.C. (1973). Parasitic oscillations in large aperture Nd3+: Glass amplifiers revisited. Appl. Opt. 12, 22152217.CrossRefGoogle ScholarPubMed
Brown, D.C., Jacobs, S.D. & Nee, N. (1978). Parasitic oscillations, absorption, stored energy density and heat density in active-mirror and disk amplifiers. Appl. Opt. 17, 211224.CrossRefGoogle ScholarPubMed
Contag, K., Karszewski, M., Stewen, C., Giesen, A. & Hügel, H. (1999). Theoretical modelling and experimental investigations of the diode-pumped thin disk Yb:YAG laser. IEEE J. Quan. Electron. 29, 697703.CrossRefGoogle Scholar
Dubé, G. & Boling, N. (1974). Liquid cladding for face-pumped Nd:Glass lasers. Appl. Opt. 13, 699700.CrossRefGoogle ScholarPubMed
Ertel, K., Banerjee, S., Mason, P.D., Phillips, P.J., Siebold, M., Hernandez-Gomez, C. & Collier, J.C. (2011). Optimising the efficiency of pulsed diode pumped Yb:YAG laser amplifiers for ns pulse generation. Opt. Express 19, 2661026626.CrossRefGoogle Scholar
Giesen, A. & Speiser, J. (2007). Fifteen years of work on thin-disk lasers: Results and scaling laws. IEEE J. Quan. Electron. 13, 598609.CrossRefGoogle Scholar
Glaze, J.A., Guch, S. & Trenholme, J.B. (1974). Parasitic suppression in large aperture Nd:Glass disk laser amplifiers. Appl. Opt. 13, 2808.CrossRefGoogle ScholarPubMed
Goren, C., Tzuk, Y., Marcus, G. & Pearl, S. (2006). Amplified spontaneous emission in slab amplifiers. IEEE J. Quan. Electron. 42, 12391247.CrossRefGoogle Scholar
Guch, S. Jr. (1976). Parasitic suppression in large aperture disk lasers employing liquid edge claddings. Appl. Opt. 15, 14531457.CrossRefGoogle ScholarPubMed
Koerner, J., Vorholt, Ch., Liebetrau, H., Kahle, M., Kloepfel, D., Seifert, R., Hein, J. & Kaluza, M.C. (2012). Measurement of temperature-dependent absorption and emission spectra of Yb:YAG, Yb:LuAG, and Yb:CaF2 between 20 °C and 200 °C and predictions on their influence on laser performance. J. Opt. Soc. Am. B 29, 24932502.CrossRefGoogle Scholar
Kong, H.J., Shin, J.S., Yoon, J.W. & Beak, D.K. (2008). Phase stabilization of the amplitude dividing four-beam combined laser system using stimulated Brillouin scattering phase conjugate mirrors. Lasers Part. Beams 27, 179184.CrossRefGoogle Scholar
Lucianetti, A., Albach, D. & Chanteloup, J.-Ch. (2011). Active-mirror-laser-amplifier thermal management with tunable helium pressure at cryogenic temperatures. Opt. Express 19, 1276612780.CrossRefGoogle ScholarPubMed
McMahon, J.M., Emmett, J.L., Holzrichter, J.F. & Trenholme, J.B. (1973). A glass-disk-laser amplifier. IEEE J. Quan. Electron. 9, 992999.CrossRefGoogle Scholar
McMahon, J.M. (1974). Laser-fusion Studies at NRL. Laser research and development. Report No. 7838. Washington, DC: Naval Research Laboratory.Google Scholar
Omatsu, T., Kong, H.J., Park, S., Cha, S., Yoshida, H., Tsubakimoto, K., Fujita, H., Miyanaga, N., Nakatsuka, M., Wang, Y., Lu, Z., Zheng, Z., Zhang, Y., Kalal, M., Slezak, O., Ashihara, M., Yoshino, T., Hayashi, K., Tokizane, Y., Okida, M., Miyamoto, K., Toyoda, K., Grabar, A.A., KabirMd, M. Md, M., Oishi, Y., Suzuki, H., Kannari, F., Schaefer, C., Pandiri, K.R., Katsuragawa, M., Wang, Y.L., Lu, Z.W., Wang, S.Y., Zheng, Z.X., He, W.M., Lin, D.Y., Hasi, W.L.J., Guo, X.Y., Lu, H.H., Fu, M.L., Gong, S., Geng, X.Z., Sharma, R.P., Sharma, P., Rajput, S., Bhardwaj, A.K., Zhu, C.Y. & Gao, W. (2012). The current trends in SBS and phase conjugation. Lasers Part. Beams 30, 117174.CrossRefGoogle Scholar
Sawicka, M., Divoky, M., Novak, J., Lucianetti, A., Rus, B. & Mocek, T. (2012). Modeling of amplified spontaneous emission, heat deposition, and energy extraction in cryogenically cooled multislab Yb3 + :YAG laser amplifier for the HiLASE project. J. Opt. Soc. Am. B 29, 12701276.CrossRefGoogle Scholar
Soures, J.M., Goldman, L.M. & Lubin, M.J. (1973). Spatial distribution of inversion in face pumped Nd:Glass laser slabs. Appl. Opt. 12, 927.CrossRefGoogle ScholarPubMed
Trenholme, J.B. (1972). Fluorescence amplification and parasitic oscillation limitations in disc lasers. Memorandum Report No. 2480. Washington, DC: Naval Research Laboratory.Google Scholar