Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T19:34:35.927Z Has data issue: false hasContentIssue false

Equation of State in Laser Shock Simulations

Published online by Cambridge University Press:  09 March 2009

B.K. Godwal
Affiliation:
High Pressure Physics Division, Bhabha Atomic Research Centre, Bombay 400 085, India
S.K. Sikka
Affiliation:
High Pressure Physics Division, Bhabha Atomic Research Centre, Bombay 400 085, India
T.C. Kaushik
Affiliation:
Neutron Physics Division, Bhabha Atomic Research Centre, Bombay 400 005, India

Abstract

A three-term equation of state is used for the simulation of hydrodynamic shock phenomena. The reliability of it is tested by comparing the isotherms and shock Hugoniots obtained from it with available experimental data. This is illustrated for three typical materials Al, Pt and Au, which are of considerable interest for inertially confined thermonuclear fusion studies. We observe that reliable equation of state (EOS) data can be generated for nonmetallic substances like CH2. The EOS is used in the simulations of laser-driven shocks in double-layered target aluminum on gold (Al-Au) using hydrodynamic code employing a simplified laser-absorption model. The output from it is compared with the recent laser-driven shock experiments of Koeniget al.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atzeni, S. et al. 1986 Laser Part. Beams 4, 393.CrossRefGoogle Scholar
Bennet, B.I. et al. 1978 Los Alamos National Laboratory Report LA-7310.Google Scholar
Bradley, D.K. et al. 1987 Phys. Rev. Lett. 59, 2995.CrossRefGoogle Scholar
Bushman, A.V. & Fortov, V.E. 1983 Sov. Phys. Usp. 26, 465.CrossRefGoogle Scholar
Bruckner, K.A. & Jorna, S. 1974 Rev. Mod. Phys. 46, 325.CrossRefGoogle Scholar
Celliers, P. & Eidman, K. 1990 Phys. Rev. 41, 3270.CrossRefGoogle Scholar
Dasilva, L. et al. 1989 Phys. Rev. Lett. 62, 1623.CrossRefGoogle Scholar
Duderstadt, J.J. & Moses, G.A. 1982 Inertial Confinement Fusion. (John Wiley & Sons, New York.)Google Scholar
Eliezer, E. & Ricci, R.A. 1991 High Pressure Equations of State: Theory and Applications. (North-Holland, Amsterdam).Google Scholar
Eliezer, S. et al. 1981 Phys. Lett. 86A, 464.CrossRefGoogle Scholar
Godwal, B.K. 1979 Phys. Lett. 71A, 57.CrossRefGoogle Scholar
Godwal, B.K. 1995 Curr. Sci. 68, 1087.Google Scholar
Godwal, B.K. & Jeanloz, R. 1989 Phys. Rev. B 40, 7501.CrossRefGoogle Scholar
Godwal, B.K. & Sikka, S.K. 1977 Pramana 8, 217.CrossRefGoogle Scholar
Godwal, B.K. & Sikka, S.K. 1978 Pramana 11, 47.CrossRefGoogle Scholar
Godwal, B.K. et al. 1981 Phys. Rev. Lett. 47, 1144.CrossRefGoogle Scholar
Godwal, B.K. et al. 1983 Phys. Rep. 102, 121.CrossRefGoogle Scholar
Godwal, B.K. et al. 1989a Phys. Rev. A 40, 4521.CrossRefGoogle Scholar
Godwal, B.K. et al. 1989b J. Appl. Phys. 65, 4608.CrossRefGoogle Scholar
Godwal, B.K. et al. 1990 Phys. Lett. A 144, 26.CrossRefGoogle Scholar
Godwal, B.K. et al. 1992 High Pressure Res. 10, 687.CrossRefGoogle Scholar
Hall, T.A. et al. 1988 Phys. Rev. Lett. 60, 2034.CrossRefGoogle Scholar
Hammel, B.A. et al. 1993 Phys. Fluids B 5, 2259.CrossRefGoogle Scholar
Heinz, D.L. & Jeanloz, R. 1984 J. Appl. Phys. 55, 885.CrossRefGoogle Scholar
Holmes, N.C. et al. 1989 J. Appl. Phys. 66, 2962.CrossRefGoogle Scholar
Kaushik, T.C. et al. 1997 Bhabha Atomic Research Centre Report (Under Preparation).Google Scholar
Kaushik, T.C. & Godwal, B.K. 1987 Phys. Rev. A 36, 5095.CrossRefGoogle Scholar
Kaushik, T.C. & Godwal, B.K. 1988 J. Appl. Phys. 64, 4869.CrossRefGoogle Scholar
Kerley, G.I. 1981 Los Alamos National Laboratory Report LA-8833-M.Google Scholar
Kerley, G.I. 1991 Sandia National Laboratory Report SAND88–2291.Google Scholar
Koenig, M. et al. 1995 Phys. Rev. Lett. 74, 2260.CrossRefGoogle Scholar
Marsh, S.P. 1980 LASL Shock Hugoniot Data (University of California Press, Berkeley).Google Scholar
McCloskey, D.J. 1964 Rand Corp. Report No. RM-3905-PR (unpublished).Google Scholar
McQueen, R.G. et al. 1970 High Velocity Impact Phenomena, Kinslow, R., ed. (Academic Press, New York) p. 294.Google Scholar
More, R.M. et al. 1988 Phys. Fluids 31, 3059.CrossRefGoogle Scholar
Nellis, W.J. et al. 1988 Phys. Rev. Lett. 60, 1414.CrossRefGoogle Scholar
Ng, A. et al. 1989 Opt. Commun. 72, 297.CrossRefGoogle Scholar
Nuckolls, J. et al. 1972 Nature 239, 139.CrossRefGoogle Scholar
Perrot, F. & Dharma-Wardana, M.W.C. 1993 Phys. Rev. Lett. 71, 797.CrossRefGoogle Scholar
Ragan, C.E. III 1984 Phys. Rev. A 29, 1391.CrossRefGoogle Scholar
Ragan, C.E. III et al. 1977 J. Appl. Phys. 48, 2860.CrossRefGoogle Scholar
Rose, S.J. 1991 Laser Part. Beams 9, 869.CrossRefGoogle Scholar
Ross, M. 1980 Phys. Rev. B 21, 3140.CrossRefGoogle Scholar
Ross, M. & Young, D.A. 1993 Annu. Rev. Phys. Chem. 44, 61.CrossRefGoogle Scholar
Shaner, J.W. et al. 1983 In Proceedings of IX AIRAPT Inter. National Conf, Vol. 3, Homan, C., Crone, R.M.C., & Whelly, F., eds. (North Holland, New York), p. 137.Google Scholar
Sikka, S.K. 1989 Phys. Lett. 135A, 129.CrossRefGoogle Scholar
Sikka, S.K. et al. 1995 High Pressure Shock Compression of Solids, Vol. 3, Asay, J.R. & Shahinpoor, M., eds. (Springer-Verlag, New York), (in press).Google Scholar
Trainor, R.J. et al. 1979 Phys. Rev. Lett. 42, 1154.CrossRefGoogle Scholar
Veeser, I.R. & Solem, S.C. 1978 Phys. Rev. Lett. 40, 1391.CrossRefGoogle Scholar
Yoo, C.S. et al. 1993 Phys. Rev. 48, 15529.CrossRefGoogle Scholar