Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T19:46:55.632Z Has data issue: false hasContentIssue false

Radiation transport and atomic physics modeling in high-energy-density laser-produced plasmas

Published online by Cambridge University Press:  09 March 2009

K. Eidmann
Affiliation:
Max-Planck-Institut für Quantenoptik, 85740 Garching, Germany

Abstract

The radiation hydrodynamics in laser-produced high-energy-density plasmas has been successfully simulated by means of the MULTI hydrocode. It is used in combination with the SNOP atomic physics code, which uses a steady-state screened hydrogenic explicit ion model and which generates non-LTE opacity tables for MULTI. After a brief general review of the modeling of the radiation hydrodynamics in laser-produced plasmas, the underlying physical models of MULTI and SNOP are described in detail, with particular emphasis on atomic physics. Examples of simulations of the radiation transport in laser plasmas are presented. They include a laser-irradiated gold foil and a radiatively heated carbon foil.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armstrong, B.H. et al. 1966 In Progress in High Temperature Physics and Chemistry Vol. 1, Rouse, C.A., ed. (Pergamon Press, Oxford).Google Scholar
Bar-Shalom, A. et al. 1989 Phys. Rev. A 40, 3183.CrossRefGoogle Scholar
Basko, M.M. & Meyer-Ter-Vehn, J. 1993 Nuclear Fusion 33, 601.CrossRefGoogle Scholar
Cauble, R. et al. 1993 Phys. Rev. Lett. 70, 2102.CrossRefGoogle Scholar
Celliers, P. & Eidmann, K. 1990 Phys. Rev. A 41, 3270.CrossRefGoogle Scholar
Colombant, D. & Tonon, G.F. 1973 J. Appl. Phys. 44, 3524.CrossRefGoogle Scholar
DaSilva, L.B. et al. 1992 Phys. Rev. Lett. 69, 438.CrossRefGoogle Scholar
Davidson, S.J. et al. 1988 Appl. Phys. Lett. 52, 847.CrossRefGoogle Scholar
Duston, D. et al. 1983 Phys. Rev. 27, 1441.CrossRefGoogle Scholar
Edwards, J. et al. 1991 Phys. Rev. Lett. 67, 3780.CrossRefGoogle Scholar
Eidmann, K. 1989 In Inertial Confinement Fusion, Proceedings of the Course and Workshop of the International School of Plasma Physics P. Caldirola, Varenna, September 1988, Caruso, A. and Sindoni, E., eds. (Editrice Compositori, Bologna), p. 65.Google Scholar
Eidmann, K. & Schwanda, W. 1991 Laser Part. Beams 9, 551.CrossRefGoogle Scholar
Eidmann, K. et al. 1990 Phys. Fluids B 2, 208.CrossRefGoogle Scholar
Elwert, G. 1954 Z. Naturforsch. 9A, 637.CrossRefGoogle Scholar
Froese-Fischer, Ch. 1987 Comput. Phys. Commun. 43, 355.CrossRefGoogle Scholar
Goldstone, P. D. et al. 1987 Phys. Rev. Lett. 59, 56.CrossRefGoogle Scholar
Griem, H.R. 1964 Plasma Spectroscopy (McGraw-Hill, New York).Google Scholar
Griem, H.R. 1968 Phys. Rev. A 165, 258.CrossRefGoogle Scholar
Hammel, B.A. et al. 1992 Europhys. Lett. 20, 319.CrossRefGoogle Scholar
Henke, B.L. et al. 1982 Atomic Data Nucl. Data Tables 27, 1.CrossRefGoogle Scholar
Huebner, W.F. 1986 Physics of the Sun (Reidel, Dordrecht).Google Scholar
Kauffman, R. 1991 In Handbook of Plasma Physics, Rosenbluth, M.N. and Sagdeev, R.Z., eds. (North-Holland, Amsterdam), pp. 111162.Google Scholar
Kippenhahn, R. & Weigert, A. 1990 Stellar Structure and Evolution (Springer-Verlag, Berlin, Heidelberg).CrossRefGoogle Scholar
Löwer, Th. & Sigel, R. 1993 (in press).Google Scholar
Lokke, W.A. & Grasberger, W.H. 1977, Lawrence Livermore Laboratory, University of California, Livermore, CA, Report UCRL-52276.Google Scholar
Massen, J. et al. 1993 Phys. Rev. E 48, 2073.CrossRefGoogle Scholar
Mayer, M. 1947 Los Alamos Scientific Laboratory, Los Alamos, NM, Report LA-647.Google Scholar
McWhirter, R.W.P. 1965 Plasma Diagnostic Techniques (Academic Press, New York), Ch. 5.Google Scholar
Mihalas, D. 1978 Stellar Atmospheres (Freeman, San Francisco).Google Scholar
Mihalas, D. & Weibel-Mihalas, B. 1984 Foundation of Radiation Hydrodynamics (Oxford University Press, Oxford).Google Scholar
Moore, C.E. 1949 Atomic Energy Levels as Derived from the Analyses of Optical Spectra (National Bureau of Standards Circular 467).Google Scholar
More, R.M. 1985 Adv. At. Mol. Phys. 21, 305; (see also the Lawrence Livermore Laboratory Report of this author, UCRL-84991, Livermore 1981).CrossRefGoogle Scholar
Murakami, M. & Meyer-Ter-Vehn, J. 1991 Nucl. Fusion 31, 1333.CrossRefGoogle Scholar
Nishimura, H. et al. 1991 Phys. Rev. A 43, 3073.CrossRefGoogle Scholar
Pomraning, G.C. 1973 The Equations of Radiation Hydrodynamics (Pergamon Press, Oxford).Google Scholar
Post, D.E. et al. 1977 At. Data Nucl. Data Tables 20, 397.CrossRefGoogle Scholar
Ramis, R. & Meyer-Ter-Vehn, J. 1992 Max-Planck Institut für Quantenoptik, Garching bei München, Germany, Report MPQ-174.Google Scholar
Ramis, R. et al. 1988 Comput. Phys. Commun. 49, 475.CrossRefGoogle Scholar
Reilman, R.F. & Manson, S.T. 1979 Astrophys. J. Suppl. Ser. 40, 815.CrossRefGoogle Scholar
Rickert, A. 1993 Max-Planck Institut für Quantenoptik, Garching bei München, Germany, Report MPQ-175.Google Scholar
Rogers, F.J. et al. 1988 Phys. Rev. A 38, 5007.CrossRefGoogle Scholar
Rozsnyai, B.F. 1991 Phys. Rev. A 43, 3035.CrossRefGoogle Scholar
Schwanda, W. & Eidmann, K. 1992 Phys. Rev. Lett. 69, 3507.CrossRefGoogle Scholar
Seely, J.F. et al. 1988 In X-Rays From Laser Plasmas, Richardson, M.C., ed. (Proc. SPIE, Vol. 831), p. 25.CrossRefGoogle Scholar
Sesame, 1983, T4 Group, Los Alamos National Laboratory, Los Alamos, NM, Report LALP-83–4.Google Scholar
Sigel, R. 1991 In Handbook of Plasma Physics, Rosenbluth, M.N. and Sagdeev, R.Z., eds. (North-Holland, Amsterdam), pp. 163197.Google Scholar
Sigel, R. et al. 1988 In X-Rays From Laser Plasmas, Richardson, M.C., ed. (Proc. SPIE, Vol. 831), p. 73.CrossRefGoogle Scholar
Sigel, R. et al. 1990 Phys. Rev. Lett. 65, 587.CrossRefGoogle Scholar
Sigel, R. et al. 1992 Phys. Rev. A 45, 3987.CrossRefGoogle Scholar
Slater, J. 1951 Quantum Theory of Matter (McGraw-Hill, New York).Google Scholar
Spitzer, L. Jr. 1962 Physics of Fully Ionized Gases. Series: Interscience Tracts on Physics and Astronomy, Vol. 3 (Interscience Publ., New York).Google Scholar
Springer, P.T. et al. 1992 Phys. Rev. Lett. 69, 3735.CrossRefGoogle Scholar
Storm, E. 1988 J. Fusion Energy 7, 131.CrossRefGoogle Scholar
Stratton, T.F. 1965 Plasma Diagnostic Techniques (Academic Press, New York), Ch. 8.Google Scholar
Takabe, H. et al. 1988 Phys. Fluids 31, 2884.CrossRefGoogle Scholar
Takabe, H. 1990 Osaka University, Osaka, Japan, ILE Research Report No. ILE9008P.Google Scholar
Tsakiris, G.D. & Eidmann, K. 1987 J. Quant. Spectrosc. Radiat. Transfer 38, 353.CrossRefGoogle Scholar
Zimmerman, G.B. & Kruer, W.L. 1975 Comments Plasma Phys. Control. Fusion 2, 51.Google Scholar
Zel'dovich, Ya.B. & Raizer, Yu.P. 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York).Google Scholar