Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T10:29:31.643Z Has data issue: false hasContentIssue false

ITS rDNA data confirm a delimitation of Bacidina arnoldiana and B. sulphurella and support a description of a new species within the genus Bacidina

Published online by Cambridge University Press:  08 October 2012

Paweł CZARNOTA
Affiliation:
Department of Agroecology and Landscape Architecture, Faculty of Biology and Agriculture, University of Rzeszów, Ćwiklińskiej 2, PL-35-601 Rzeszów, Poland. Email: pawczarnota@poczta.onet.pl
Beata GUZOW-KRZEMIŃSKA
Affiliation:
Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Kładki 24, PL-80-822 Gdańsk, Poland

Abstract

Bacidina flavoleprosa is described as a new species from the Czech Republic. Its position within the genus is supported by phylogenetic inferences of ITS rDNA sequences from its holotype and many other representatives of Bacidia s. lat., including newly sequenced Bacidina sulphurella, B. adastra and B. neosquamulosa, as well as additional sequences of B. arnoldiana. ITS data also support the recent delimitation of B. arnoldiana and B. sulphurella based on the shape of conidia and ecological preferences.

Type
Research Article
Copyright
Copyright © British Lichen Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. (1990) Basic local alignment search tool. Journal of Molecular Biology 215: 403410.CrossRefGoogle ScholarPubMed
Brand, M., Coppins, B. J., van den Boom, P. P. G. & Sérusiaux, E. (2009) Further data on the lichen genus Bacidia s. l. in the Canary Islands and Western Europe, with descriptions of two new species. Bibliotheca Lichenologica 99: 8192.Google Scholar
Clement, M., Posada, D. & Crandall, K. A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 16571660.CrossRefGoogle ScholarPubMed
Coppins, B. J. & Aptroot, A. (2009) Bacidia. In The Lichens of Great Britain and Ireland (Smith, C. W., Aptroot, A., Coppins, B. J., Fletcher, A., Gilbert, O. L., James, P. W. & Wolseley, P. A., eds): 189207. London: British Lichen Society.Google Scholar
Coppins, B. J. & van den Boom, P. P. G. (2002) Bacidia brandii, a new lichen species from the Netherlands, Belgium, France and Lithuania. Lichenologist 34: 327332.CrossRefGoogle Scholar
Crespo, A. & Pérez-Ortega, S. (2009) Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. Anales del Jardín Botánico de Madrid 66: 7181.CrossRefGoogle Scholar
Czarnota, P. & Coppins, B. J. (2006) A new Bacidia with long-necked pycnidia from Central Europe. Lichenologist 38: 407410.CrossRefGoogle Scholar
Czarnota, P. & Coppins, B. J. (2007) Contribution to the knowledge of rare Bacidia s. lat. (Lecanorales, lichenized Ascomycetes) from Central Europe including a new, pallid forma of Bacidia hemipolia. Nova Hedwigia 85: 503513.CrossRefGoogle Scholar
Dolnik, C. (2005) Bacidia etayana on the German Baltic coast. Herzogia 18: 219222.Google Scholar
Ekman, S. (1996) The corticolous and lignicolous species of Bacidia and Bacidina in North America. Opera Botanica 127: 1148.Google Scholar
Ekman, S. (2001) Molecular phylogeny of the Bacidiaceae (Lecanorales, lichenized Ascomycota). Mycological Research 105: 783797.CrossRefGoogle Scholar
Ekman, S. (2004) Bacidina. In Lichen Flora of the Greater Sonoran Desert Region. Vol. 2 (Nash, T. H. III, Ryan, B. D., Diederich, P., Gries, C. & Bungartz, F., eds): 2832. Tempe, Arizona: Lichens Unlimited.Google Scholar
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.CrossRefGoogle Scholar
Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696704.CrossRefGoogle ScholarPubMed
Guindon, S., Lethiec, F., Duroux, P. & Gascuel, O. (2005) PHYML Online – a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Research 33: W557W559.CrossRefGoogle ScholarPubMed
Guzow-Krzemińska, B. & Węgrzyn, G. (2000) Potential use of restriction analysis of PCR-amplified DNA fragments in taxonomy of lichens. Mycotaxon 76: 305313.Google Scholar
Hauck, M. & Wirth, V. (2010) New combinations in Bacidina. Herzogia 23: 1517.Google Scholar
Llop, E. & Ekman, S. (2007) Bacidia coprodes—resurrecting a misinterpreted species. Lichenologist 39: 251257.CrossRefGoogle Scholar
Llop, E. & van den Boom, P. (2009) Notes on the lichen genus Bacidia s. l. (lichenized Ascomycota) in the Cape Verde Islands and new lichen records for the archipelago. Mycotaxon 109: 171179.CrossRefGoogle Scholar
Meyer, B. & Printzen, C. (2000) Proposal for a standardized nomenclature and characterization of insoluble lichen pigments. Lichenologist 32: 571583.CrossRefGoogle Scholar
Molina, M. C., Crespo, A., Blanco, O., Lumbsch, H. T. & Hawksworth, D. L. (2004) Phylogenetic relationships and species concepts in Parmelia s. str. (Parmeliaceae) inferred from nuclear ITS rDNA and β-tubulin sequences. Lichenologist 36: 3754.CrossRefGoogle Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Page, R. D. M. (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357358.Google ScholarPubMed
Posada, D. (2006) ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Research 34: W700W703.CrossRefGoogle Scholar
Schmull, M., Miądlikowska, J., Pelzer, M., Stocker-Wörgötter, E., Hofstetter, V., Fraker, E., Hodkinson, B. P., Reeb, V., Kukwa, M., Lumbsch, H. T. et al. , (2011) Phylogenetic affiliations of members of the heterogeneous lichen-forming fungi of the genus Lecidea sensu Zahlbruckner (Lecanoromycetes, Ascomycota). Mycologia 103: 9831003.CrossRefGoogle ScholarPubMed
Sérusiaux, E., Brand, A. M., Motiejunaite, J., Orange, A. & Coppins, B. J. (2010) Lecidea doliiformis belongs to Micarea, Catillaria alba to Biatora, and Biatora ligni-mollis occurs in Western Europe. Bryologist 113: 333344.CrossRefGoogle Scholar
Shimodaira, H. & Hasegawa, M. (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution. 16: 11141116.CrossRefGoogle Scholar
Sparrius, L. & Aptroot, A. (2003) Bacidia adastra, a new sorediate lichen species from Western Europe. Lichenologist 35: 275278.CrossRefGoogle Scholar
Spribille, T., Björk, C. R., Ekman, S., Elix, J. A., Goward, T., Printzen, C., Tønsberg, T. & Wheeler, T. (2009) Contributions to an epiphytic lichen flora of northwest North America: I. Eight new species from British Columbia inland rain forests. Bryologist 112: 109137.CrossRefGoogle Scholar
Stöver, B. C. & Müller, K. F. (2010) TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BMC Bioinformatics 11: 7.CrossRefGoogle ScholarPubMed
Swofford, D. L. (2001) PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Tamura, K. & Nei, M. (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512526.Google ScholarPubMed
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28: 27312739.CrossRefGoogle ScholarPubMed
Templeton, A. R., Crandall, K. A. & Sing, C. F. (1992) A cladistics analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA-sequence data. III. Cladogram estimation. Genetics 132: 619633.CrossRefGoogle ScholarPubMed
van den Boom, P. P. G. & Vezda, A. (1996) Woessia etayana sp. nov., a lichen species from the western Pyrenees. Herzogia 12: 3134.CrossRefGoogle Scholar
Vězda, A. (1990) Bacidina, genus novum familiae Lecideaceae s. lat. (Ascomycetes lichenisati). Folia Geobotanicaet Phytotaxonomica, Praha 25: 431432.CrossRefGoogle Scholar
Vondrák, J., Říha, P., Arup, U. & Søchting, U. (2009) The taxonomy of the Caloplaca citrina group (Teloschistaceae) in the Black Sea region; with contributions to the cryptic species concept in lichenology. Lichenologist 41: 571604.CrossRefGoogle Scholar
White, T. J., Bruns, T., Lee, S. & Taylor, J. W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications (Innes, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., eds): 315-322. New York: Academic Press.Google Scholar
Wirth, V. (1995) Die Flechten Baden-Württembergs. Stuttgart: E. Ulmer.Google Scholar