Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T20:45:53.841Z Has data issue: false hasContentIssue false

Response of Evernia prunastri to urban environmental conditions in Central Europe after the decrease of air pollution

Published online by Cambridge University Press:  08 January 2013

Anna LACKOVIČOVÁ
Affiliation:
Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovakia. Email: anna.guttova@savba.sk
Anna GUTTOVÁ*
Affiliation:
Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, Slovakia. Email: anna.guttova@savba.sk
Martin BAČKOR
Affiliation:
Institute of Biology and Ecology, Department of Botany, P. J. Šafárik University, Mánesova 23, SK-041 67 Košice, Slovakia
Peter PIŠÚT
Affiliation:
Department of Physical Geography and Geoecology, Faculty of Natural Sciences, Comenius University Bratislava, Mlynská dolina B-1, SK-842 15 Bratislava, Slovakia
Ivan PIŠÚT
Affiliation:
Ostredková 4, SK-82102 Bratislava, Slovakia

Abstract

The epiphytic lichen Evernia prunastri is sensitive to air pollution and reacted by total retreat to the worsening of air quality during the peak of SO2 pollution in Central Europe (1950s–1990). Since 1990, after a significant decrease in air pollution, epiphytic lichens recolonized previously polluted areas, including E. prunastri. We investigated the physiological status of E. prunastri, transplanted for six months in 34 sites in the urban area of Bratislava (Slovakia) under current conditions. The content of chlorophylls, cortical and medullar secondary metabolites and soluble proteins were explored. We then examined the relationship of these parameters with the environmental quality status, reflected by the diversity of epiphytic lichens. The results showed that the physiological status of E. prunastri did not change significantly after exposure. Positive correlations were found between lichen diversity in the sampling sites and physiological parameters (photosynthetic pigments and phaeophytinization quotient) in the transplants. Transplants from sampling sites with a greater proportion of nitrophilous lichens displayed a decrease in photosynthetic pigments. Sites where E. prunastri naturally occurred had a lower proportion of nitrophilous species in comparison to sites where E. prunastri was not present. This suggests that the indicator species E. prunastri may also recolonize sites with low eutrophication in urban environments under decreased air pollution, and the information on its presence can help to assess the pressure caused by nitrogen excess.

Type
Articles
Copyright
Copyright © British Lichen Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asta, J., Erhardt, W., Ferretti, M., Fornasier, F., Kirschbaum, U., Nimis, P. L., Purvis, O. W., Pirintsos, S., Scheidegger, C., van Haluwyn, C. et al. (2002) Mapping lichen diversity as an indicator of environmental quality. In Monitoring with Lichens – Monitoring Lichens (Nimis, P. L., Scheidegger, C. & Wolseley, P. A., eds): 273279. Dordrecht: Kluwer Academic Publisher.CrossRefGoogle Scholar
Ayrault, S., Clochiatti, R., Carrot, F., Daudin, L. & Bennett, J. P. (2007) Factors to consider for trace element deposition biomonitoring surveys with lichen transplants. Science of the Total Environment 372: 717727.CrossRefGoogle ScholarPubMed
Bačkor, M. (2011) Lichens and Heavy Metals: Toxicity and Tolerance. Košice: Pavol Jozef Šafárik University.Google Scholar
Bačkor, M. & Dzubaj, A. (2004) Short-term and chronic effects of copper, zinc and mercury on the chlorophyll content of four lichen photobionts and related alga. Journal of the Hattori Botanical Laboratory 95: 271283.Google Scholar
Bačkor, M. & Loppi, S. (2009) Interactions of lichens with heavy metals. Biologia Plantarum 53: 214222.CrossRefGoogle Scholar
Bačkor, M., Váczi, P., Barták, M., Buďová, J. & Dzubaj, A. (2007) Uptake, photosynthetic characteristics and membrane lipid peroxidation levels in the lichen photobiont Trebouxia erici exposed to copper and cadmium. Bryologist 110: 100107.CrossRefGoogle Scholar
Bačkor, M., Klejdus, B., Vantová, I. & Kováčik, J. (2009 a) Physiological adaptation in the lichens Peltigera rufescens and Cladina arbuscula var. mitis, and the moss Racomitrium lanuginosum to copper-rich substrate. Chemosphere 76: 13401343.CrossRefGoogle ScholarPubMed
Bačkor, M., Kováčik, J., Dzubaj, A. & Bačkorová, M. (2009 b) Physiological comparison of copper toxicity in the lichens Peltigera rufescens (Weis) Humb. and Cladina arbuscula subsp. mitis (Sandst.) Ruoss. Plant Growth Regulation 58: 279286.CrossRefGoogle Scholar
Białońska, D. & Dayan, F. E. (2005) Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region. Journal of Chemical Ecology 31: 29752991.CrossRefGoogle Scholar
Boonpragob, K. (2002) Monitoring physiological change in lichens: total chlorophyll content and chlorophyll degradation. In Monitoring with Lichens – Monitoring Lichens (Nimis, P. L., Scheidegger, C. & Wolseley, P. A., eds): 323326. Dordrecht: Kluwer Academic Publisher.CrossRefGoogle Scholar
Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248254.CrossRefGoogle ScholarPubMed
Davies, L., Bates, J. W., Bell, J. N. B., James, P. W. & Purvis, O. W. (2007) Diversity and sensitivity of epiphytes to oxides of nitrogen in London. Environmental Pollution 146: 299310.CrossRefGoogle Scholar
Feige, G. B., Lumbsch, H. T., Huneck, S. & Elix, J. A. (1993) Identification of lichen substances by a standardized high-performance liquid chromatographic method. Journal of Chromatography 646: 417427.CrossRefGoogle Scholar
Feráková, V. & Jarolímek, I. (2011) Bratislava. In Plants and Habitats of European Cities (Kelcey, J. G. & Müller, N., eds): 79129. New York: Springer.CrossRefGoogle Scholar
Gaio-Oliveira, G., Dahlman, L., Palmqvist, K., Martins-Louçáo, M. A. & Máguas, C. (2005) Nitrogen uptake in relation to excess supply and its effects on the lichens Evernia prunastri (L.) Ach. and Xanthoria parietina (L.) Th. Fr. Planta 220: 794803.CrossRefGoogle Scholar
Garty, J. (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Critical Reviews in Plant Sciences 20: 309371.CrossRefGoogle Scholar
Garty, J., Ronen, R. & Galun, M. (1985) Correlation between chlorohyll degradation and the amount of some elements in the lichen Ramalina duriaei (De Not.) Jatta. Environmental and Experimental Botany 25: 6774.CrossRefGoogle Scholar
Gilbert, O. (1992) Lichen reinvasion with declining air pollution. In Bryophytes and Lichens in a Changing Environment (Bates, J. W. & Farmer, A. M., eds): 159177. Oxford: Oxford University Press.CrossRefGoogle Scholar
Gonzáles, C. M. & Pignata, M. L. (2000) Chemical response of transplanted lichen Canomaculina pilosa to different emission sources of air pollutants. Environmental Pollution 110: 235242.CrossRefGoogle Scholar
Guttová, A., Lackovičová, A., Pišút, I. & Pišút, P. (2011) Decrease in air pollution load in urban environment of Bratislava (Slovakia) inferred from accumulation of metal elements in lichens. Environmental Monitoring and Assessment 182: 361373.CrossRefGoogle ScholarPubMed
Hajdúk, J., Lisická, E. & Pišút, I. (1975) Häufigkeit epiphytischer Flechten einiger Parkanlagen im Gebiet von Bratislava. Zborník Slovenského Národného Múzea, Prírodné Vedy 21: 75117.Google Scholar
Härtel, O. & Grill, D. (1972) Die Leitfähigkeit von Fichtenborken-Extrakten als empfindlicher Indikator für Luftverunreinigung. European Journal of Forest Pathology 2: 205215.CrossRefGoogle Scholar
Hauck, M. (2010) Ammonium and nitrate tolerance in lichens. Environmental Pollution 158: 11271133.CrossRefGoogle ScholarPubMed
Hauck, M. & Huneck, S. (2007 a) Lichen substances affect metal adsorption in Hypogymnia physodes . Journal of Chemical Ecology 33: 219223.CrossRefGoogle ScholarPubMed
Hauck, M. & Huneck, S. (2007 b) The putative role of fumarprotocetraric acid in the manganese tolerance of the lichen Lecanora conizaeoides . Lichenologist 39: 301304.CrossRefGoogle Scholar
Hauck, M. & Paul, A. (2005) Manganese as a site factor for epiphytic lichens. Lichenologist 37: 409423.CrossRefGoogle Scholar
Hawksworth, D. L. & Rose, F. (1976) Lichens as Pollution Monitors. London: Edward Arnold.Google Scholar
Izakovičová, Z., Moyzesová, M. & Krnáčová, Z. (2006) Stresové (rizikové) faktory. In Krajinnoekologické Podmienky Rozvoja Bratislavy (Hrnčiarová, T., ed.): 128152. Bratislava: VEDA.Google Scholar
Kong, F. X., Hu, X., Chao, S. Y., Sang, W. L. & Wang, L. S. (1999) Physiological responses of the lichen Xanthoparmelia mexicana to oxidative stress of SO2 . Environmental and Experimental Botany 42: 201209.CrossRefGoogle Scholar
Lackovičová, A. (1981) Epifytické lišajníky a čistota ovzdušia v južnej časti Malých Karpát. Dissertation thesis, Slovak Academy of Sciences.Google Scholar
Lackovičová, A., Pišút, P. & Guttová, A. (2008) Epiphytic lichens – biomonitoring of air pollution in Bratislava (SW Slovakia). Scripta Facultatis Rerum Naturalium Universitatis Ostraviensis 186: 138142.Google Scholar
LeBlanc, F. & De Sloover, J. (1970) Relation between industrialization and the distribution and growth of epiphytic lichens and mosses in Montreal. Canadian Journal of Botany 48: 14851496.CrossRefGoogle Scholar
Liška, J. (1997) Use of a number of lichen indicator species as a bioindication characteristic for air pollution assessment. Příroda 10: 714.Google Scholar
Maňkovská, B., Oszlányi, J. & Barančok, P. (2008) Measurement of the atmospheric loading of the Slovak Carpathians using bryophyte technique. Ekológia, Bratislava 27: 339350.Google Scholar
Millanes, A. M., Fontaniella, B., Legaz, M. & Vicente, C. (2003) Histochemical detection of an haematommoyl alcohol dehydrogenase in the lichen Evernia prunastri . Plant Physiology and Biochemistry 41: 786791.CrossRefGoogle Scholar
Ministry of Environment SR (2009) Správa o kvalite ovzdušia a podiele jednotlivých zdrojov na jeho znečisťovaní v Slovenskej republike 2008. Bratislava: Ministerstvo životného prostredia SR, Slovenský Hydrometeorologický ústav.Google Scholar
Monnet, F., Bordas, F., Deluchat, V. & Baudu, M. (2006) Toxicity of copper excess on the lichen Dermatocarpon luridum: antioxidant enzyme activities. Chemosphere 65: 18061813.CrossRefGoogle ScholarPubMed
Munzi, S., Pisani, T. & Loppi, S. (2009) The integrity of lichen cell membrane as a suitable parameter for monitoring biological effects of acute nitrogen pollution. Ecotoxicology and Environmental Safety 72: 20092012.CrossRefGoogle ScholarPubMed
Munzi, S., Pisani, T., Paoli, L. & Loppi, S. (2010) Time and dose dependency of the effects of nitrogen pollution on lichens. Ecotoxicology and Evironmental Safety 73: 17851788.CrossRefGoogle ScholarPubMed
Munzi, S., Loppi, S., Cruz, C. & Branquinho, C. (2011) Do lichens have “memory” of their native nitrogen environment? Planta 233: 333342.CrossRefGoogle ScholarPubMed
Nimis, P. L. & Martellos, S. (2008) ITALIC – The Information System on Italian Lichens. Version 4.0. University of Trieste, Department of Biology, IN4.0/1; http://dbiodbs.univ.trieste.it/.Google Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Paoli, L. & Loppi, S. (2008) A biological method to monitor early effects of the air pollution caused by the industrial exploitation of geothermal energy. Environmental Pollution 155: 383388.CrossRefGoogle ScholarPubMed
Paoli, L., Pisani, T., Munzi, S., Gaggi, C. & Loppi, S. (2010) Influence of sun irradiance and water availability on lichen photosynthetic pigments during a Mediterranean summer. Biologia 65: 776783.CrossRefGoogle Scholar
Paoli, L., Pisani, T., Guttová, A., Sardella, G. & Loppi, S. (2011) Physiological and chemical response of lichens transplanted in and around an industrial area of south Italy: relationship with the lichen diversity. Ecotoxicology and Environmental Safety 74: 650657.CrossRefGoogle ScholarPubMed
Paoli, L., Munzi, S., Fiorini, E., Gaggi, C. & Loppi, S. (2012) Influence of angular exposure and proximity to vehicular traffic on the diversity of epiphytic lichens and the bioaccumulation of traffic-related elements. Environmental Science and Pollution Research DOI 10.1007/s11356-012-0893-1. (in press)Google ScholarPubMed
Pawlik-Skowrońska, B. & Bačkor, M. (2011) Zn/Pb-tolerant lichens with higher content of secondary metabolites produce less phytochelatins than specimens living in unpolluted habitats. Environmental and Experimental Botany 72: 6470.CrossRefGoogle Scholar
Pinho, P., Augusto, S., Branquinho, C., Bio, A., Pereira, M. J., Soares, A. & Catarino, F. (2004) Mapping lichen diversity as a first step for air quality assessment. Journal of Atmospheric Chemistry 49: 377389.CrossRefGoogle Scholar
Piovár, J., Stavrou, E., Kaduková, J., Kimáková, T. & Bačkor, M. (2011) Influence of long-term exposure to copper on the lichen photobiont Trebouxia erici and the free-living alga Scenedesmus quadricauda . Plant Growth Regulation 63: 8188.CrossRefGoogle Scholar
Pirintsos, S., Paoli, L., Loppi, S. & Kotzabasis, K. (2011) Photosynthetic performance of lichen transplants as early indicator of climatic stress along an altitudinal gradient in the arid Mediterranean area. Climatic Change 107: 305328.CrossRefGoogle Scholar
Pišút, I. (1999) Mapovanie Epifytických Lišajníkov na Slovensku (1970–1981). Bratislava: Botanický ústav SAV.Google Scholar
Pišút, I. (2000) Dobrá správa pre Bratislavu: Lišajníky sa vracajú. Chránené Územia Slovenska 44: 35.Google Scholar
Pišút, I. & Lisická, E. (1985) A study of cryptogamic epiphytes on an oak trunk in the vicinity of Bratislava in the years 1973–1983. Ekológia 4: 225234.Google Scholar
Ra, H. S. Y., Geiser, L. & Crang, R. F. E. (2005) Effects of season and low-level air pollution on physiology and element content of lichens from the U.S. Pacific Northwest. Science of the Total Environment 343: 155167.CrossRefGoogle ScholarPubMed
Richardson, D. H. S. (1988) Understanding the pollution sensitivity of lichens. Botanical Journal of the Linnean Society 96: 3143.CrossRefGoogle Scholar
Richardson, D. H. S. & Nieboer, E. (1983) Ecophysiological responses of lichen to SO2 . Journal of the Hattori Botanical Laboratory 54: 331351.Google Scholar
Ronen, R. & Galun, M. (1984) Pigment extraction from lichens with dimethyl sulfoxide (DMSO) and estimation of chlorophyll degradation. Environmental and Experimental Botany 24: 239245.CrossRefGoogle Scholar
Ryan, B. D. (2002) Evernia. In Lichen Flora of the Greater Sonoran Desert Region. Volume I. (Nash, T. H. III, Ryan, B. D., Gries, C. & Bungartz, F., eds): 188190. Tempe, Arizona: Lichens Unlimited, Arizona State University.Google Scholar
Schönbeck, H. (1969) A method for determining the biological effects of air pollution by transplanted lichens. Staub-Reinhaltung der Luft 20: 1721.Google Scholar
Slovak Hydrometeorological Institute (2010) Hodnotenie Kvality Ovzdušia v Slovenskej Republike 2009. Bratislava: Slovenský Hydrometeorologický ústav.Google Scholar
van Haluwyn, C. & van Herk, C. M. (2002) Bioindication: the community approach. In Monitoring with Lichens – Monitoring Lichens (Nimis, P. L., Scheidegger, C. & Wolseley, P. A., eds.): 3964. Dordrecht: Kluwer Academic Publisher.CrossRefGoogle Scholar
van Herk, (2001) Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time. Lichenologist 33: 419441.CrossRefGoogle Scholar
Wellburn, A. R. (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutions. Journal of Plant Physiology 144: 307313.CrossRefGoogle Scholar
Wolseley, P. A., James, P. W., Purvis, O. W., Leith, I. D. & Sutton, M. A. (2004) Bioindicator methods for nitrogen based on community species composition: lichens. In Bioindicator and Biomonitoring Methods for Assessing the Effects of Atmospheric Nitrogen on Statutory Nature Conservation Sites (Sutton, M. A., Pitcairn, C. E. R. & Whitfield, C. P., eds): 7585. Peterborough: JNCC Report.Google Scholar
Závodský, D. (2007) Znečistenia ovzdušia Bratislavy v rokoch 1965–2005. In Bioclimatology and Natural Hazards, International Scientific Conference Proceedings, Pol'ana nad Detvou, Slovakia, September 17–20, 2007.Google Scholar