Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T06:40:34.954Z Has data issue: false hasContentIssue false

102.53 The excentral triangle and a curious application to inequalities

Published online by Cambridge University Press:  17 October 2018

Martin Lukarevski*
Affiliation:
Department of Mathematics and Statistics, University Goce Delcev - Stip, Macedonia e-mail: martin.lukarevski@ugd.edu.mk

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © Mathematical Association 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Weitzenböck, R., Über eine ungleichung in der dreiecksgeometrie, Math. Zeitschr. 5 (1919) pp. 137146.Google Scholar
2. Finsler, P., Hadwiger, H., Einige relationen im Dreieck, Commentarii Mathematici Helvetici, 10 (1937), no.1, pp. 316326.Google Scholar
3. Engel, A., Problem-solving strategies, Springer-Verlag, New York (1998).Google Scholar
4. Lukarevski, M., An alternate proof of Gerretsen's inequalities, Elem. Math. 72 (2017) pp. 28.Google Scholar
5. Lukarevski, M., Amer. Math. Monthly, 123 (2016), no. 9, Problem 11938.Google Scholar
6. Alsina, C., Nelsen, R., Geometric proofs of the Weitzenböck and Hadwiger-Finsler inequalities, Math. Mag. 81 (3) (2008) pp. 216219.Google Scholar
7. Altshiller-Court, N., College geometry, Barnes & Noble (1952).Google Scholar
8. Leversha, G., The geometry of the triangle, UKMT (2013).Google Scholar
9. Johnson, R., Advanced euclidean geometry, Dover (1960).Google Scholar