Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T16:13:41.689Z Has data issue: false hasContentIssue false

101.19 Approximate quadrature of the circle using a set square

Published online by Cambridge University Press:  15 June 2017

Mieczysław Szyszkowicz*
Affiliation:
112 Four Seasons Drive, Ottawa, K2E 7S1, Canada e-mail: mszyszkowicz@yahoo.ca

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © Mathematical Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Loynes, Louis, Approximate quadrature of the circle. Math. Gaz. 45 (December 1961) p. 330.Google Scholar
2. Szyszkowicz, Mieczysław, Krótka historia ekierki Binga (in Polish: A short history of Bing's set square). East European Scientific Journal (EESJ 12 (2) (2016) pp. 5760 and also available at http://eesj-science.com/wp-content/uploads/2016/09/EESJ_12_2.pdf Google Scholar
3. Bing, E., Der Kreiswinkel. Vermischtes. VDI-Z: Zeitschrift für die Entwicklung , Konstruktion, Produktion, 21 (6) (Juniheft 1877) pp. 273279.Google Scholar
4. Smeal, G., Baxandall, D., Construction for an approximate quadrature of the circle, Nature, 101 (2538), (1918) p. 304.CrossRefGoogle Scholar
5. Hughes, T. M. P., G. B. Mathews, , A triangle that gives the area and circumference of a circle, and the diameter of a circle equal in area to any given square, Nature, 93 (2318), (1914) p. 110.Google Scholar
6. Baynes, R., Construction for an approximate quadrature of the circle. Nature, 101(2536), (1918) p. 264.CrossRefGoogle Scholar