Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-18T03:02:30.863Z Has data issue: false hasContentIssue false

104.21 The circummidarc triangle and the Finsler-Hadwiger inequality

Published online by Cambridge University Press:  18 June 2020

Martin Lukarevski*
Affiliation:
Department of Mathematics and Statistics, University ‘Goce Delcev’ - Stip, North Macedonia e-mail: martin.lukarevski@ugd.edu.mk

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© Mathematical Association 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Leversha, G., The Geometry of the Triangle, UKMT (2013).Google Scholar
Finsler, P., Hadwiger, H., Einige Relationen im Dreieck, Commentarii Mathematici Helvetici, 10 (1937), no.1, pp. 316326.CrossRefGoogle Scholar
Steele, J. M., The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities, Cambridge University Press, Cambridge UK and the Mathematical Association of America, Washington DC (2004).Google Scholar
Weitzenböck, R., Über eine Ungleichung in der Dreiecksgeometrie, Math. Zeitschr. 5 (1919) pp. 137146.CrossRefGoogle Scholar
Engel, A., Problem-Solving Strategies, Springer-Verlag, New York (1998).Google Scholar
Lukarevski, M., The excentral triangle and a curious application to inequalities, Math. Gaz. 102 (November 2018) pp. 531533.CrossRefGoogle Scholar
Lukarevski, M., An alternate proof of Gerretsen's inequalities, Elem. Math. 72, No. 1, (2017), pp. 28.CrossRefGoogle Scholar
Lukarevski, M., Problem 11938: An Inequality for Triangles, Amer. Math. Monthly, 123, No. 9 (2016), p. 941; solution by J. G. Heuver, ibid 125, No. 7 (2018), p. 664.Google Scholar
Lukarevski, M., Marinescu, D.S., A refinement of the Kooi's inequality, Mittenpunkt and applications, Journal of Mathematical Inequalities, 13(3), (2019), pp. 827832.CrossRefGoogle Scholar
Alsina, C., Nelsen, R., Geometric proofs of the Weitzenböck and Hadwiger-Finsler inequalities, Math. Mag. 81, No. 3 (2008) pp. 216219.CrossRefGoogle Scholar