No CrossRef data available.
Published online by Cambridge University Press: 03 November 2016
1 To prove that a line meeting one given conic in points harmonic to its intersections with another given conic, touches a conic.
2. Lemma I. Let two conies intersect in P, Q, R, S as shown in Fig. 1.
Let UV, FG be a pair of common tangents intersecting in T, and let the tangents at P to the two conies cut UF, VG in the points M, N respectively. Then M, N, T are collinear
For: QR, PS, FU, GV all meet in a point X, and the range MFUX is related to the pencil P(PFUS), which is related to F(PFUS), which is related to PQ′XS, where Q′ is the intersection of SP and FG Similarly, NGVX is related to PQ′XS. Hence MFUX and NGVX are related, and thus MN passes through T
page no 165 note * See Baker, , Principles of Geometry, ii. 61, par. 2 Google Scholar.
page no 165 note † Baker, ii. 37.
page no 166 note * Baker, ii. 37.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.