No CrossRef data available.
Published online by Cambridge University Press: 08 February 2018
The following observations are motivated by the facts that the area of a planar figure displayed on a screen can be expressed by a certain number of pixels; and if the figure is drawn by a plotter, then its area can be characterised by the total length of a line which fills it in.
The generalisations of the Pythagorean theorem are of three kinds. Firstly, the squares on the sides of the right triangle are substituted by other geometrically similar planar figures (Euclid's Elements Book VI, Proposition 31 [1]). Secondly, the assumption of the right angle is omitted (the law of cosines), or both of these generalizations occur simultaneously (Pappus’ area theorem [2], see also H. W. Eves [3]). Thirdly, mathematical spaces other than the plane are considered (for example, de Gua-Faulhaber theorem about trirectangular tetrahedra [3], further generalised by Tinseau [4], Euclidean n-spaces, Banach spaces [5], see also [6]).
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.