Published online by Cambridge University Press: 23 January 2015
The well-known Fibonacci and Lucas numbers continue to faxcinate the mathematical community with their beauty, elegance, ubiquity, and applicability. After several centuries of exploration, they are still a fertile ground for additional activities, for Fibonacci enthusiasts and amateurs alike.
Fibonacci numbers Fn and Lucas numbers Ln belong to a large integer family {xn}, often defined by the recurrence xn = xn−1 + xn−2, where x1 = a, x2 = b, and n ≥ 3. When a = b = 1, xn = Fn; and when a = 1 and b = 3, xn = Ln. Clearly, F0 = 0 and L0 = 2. They satisfy a myriad of elegant properties [1,2,3]. Some of them are:
In this article, we will give a brief introduction to the Q-matrix, employ it in the construction of graph-theoretic models [4, 5], and then explore some of these identities using them.
In 1960 C.H. King studied the Q-matrix
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.