No CrossRef data available.
Published online by Cambridge University Press: 03 November 2016
1. One of the two curious self-reciprocal formulae stated by Rama-nujan,
where
of which I have recently given a proof, can be established by using a result proved by Stieltjes that, if x > 0, m ≥ 0, 0≤a≤ 1,
The proof only requires the above result in the case in which m = 1, a = 0. While seeking an extension of the result (1. 1), I have obtained an expression for the continued fraction (1. 3) in the form of an infinite series.
page no 257 note * Collected Papers, 334.
page no 257 note † Journal London Math. Soc. 4 (1929), 310-13.
page no 257 note ‡ Quart. J. of Math. 35 (1904), 195.
page no 257 note § Proc. London Math. Soc. (2), 33 (1931), 226.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.