No CrossRef data available.
Published online by Cambridge University Press: 17 February 2021
Morley’s trisector theorem says that the three intersections of the trisectors of the angles of a triangle, lying near the three sides respectively, form an equilateral triangle. See Figure 1. Morley discovered his theorem in 1899, and news of it quickly spread. Over the years many proofs have been published, by trigonometry or by geometry, but a simple angle-chasing argument is elusive. See [1] for a list up to 1978. Perhaps the easiest proof is that of John Conway [2], who assembles a triangle similar to the given triangle by starting with an equilateral triangle and surrounding it by triangles with very carefully chosen angles.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.