No CrossRef data available.
Published online by Cambridge University Press: 25 August 2015
In this paper we show how to derive Vieta’s famous product of nested radicals for π [1] from the Archimedean iterative algorithm for π, [2, 3]. Only simple algebraic manipulations are needed.
The Archimedean iterative algorithm for calculating π uses a method involving the two equations:
and
In using this algorithm, we start with a circle of diameter 1. Imagine two regular polygons each with the same number of sides, circumscribed and inscribed to this circle. The larger one has perimeter a0, the smaller has perimeter b0. Since the perimeter of the circle is π we have b0 < π < a0. Now consider regular polygons with twice the number of sides that circumscribe and inscribe the circle and call their perimeters a1 and b1 respectively. These can be calculated from (1) and (2). Continuing in this way we generate the perimeters of inscribed and circumscribed regular polygons, and in each case the number of sides is twice the sides of the previous polygon. Clearly the sequence {an} approaches π from above and {bn} approaches π from below.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.