Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T11:27:43.047Z Has data issue: false hasContentIssue false

An approximate theorem for Borsuk's conjecture

Published online by Cambridge University Press:  24 October 2008

Robert Knast
Affiliation:
Institute of Mathematics, Polish Academy of Sciences, Poznań Branch

Extract

In 1933 Borsuk(2) made the following conjecture: Every bounded set of points in Euclidean n-space En can be represented as the union of n + 1 sets of smaller diameter. He proved it for n = 2. Hadwiger (5) proved Borsuk's conjecture assuming the additional condition that the surface of the set is sufficiently smooth. On the other hand, up to now the conjecture has been proved for n ≤ 3 only (3, 4).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)BOїTяHCKий, B. Г. and Гoxбepг, И. Ц. Teopembl u зa∂aчu koMбuHamopHoŭ eeomempuu (ИзД. Hayka, MockBa, 1965).Google Scholar
(2)Borsuk, K.Drei Sätze über die n-dimensionale Sphäre. Fund. Math. 20 (1933), 177190.CrossRefGoogle Scholar
(3)Grünbaum, B.A simple proof of Borsuk's conjecture in three dimensions. Proc. Cambridge Philos. Soc. 53 (1957), 776778.CrossRefGoogle Scholar
(4)GrÜnbaum, B. Borsuk's problem and related questions. Proc. Sympos. Pure Math., vol. 7 (Convexity). (Providence, U.S.A. 1963), 271284.Google Scholar
(5)Hadwiger, H.Überdeckung einer Menge durch Mengen kleineren Durchmessers. Comment. Math. Heiv. 18 (1945), 7375; 19 (1946), 72–73.CrossRefGoogle Scholar
(6)Jung, H. W. E.Über die kleinesee Kugel, die eine räumliche Figur einschliesst. Crelle's. Journal 123 (1901), 241257.Google Scholar
(7)Lenz, H.Zur Zerlegung von Punktmengen in solche kleineren Durchmessers. Achiv. Math. 6, N5 (1955), 413416.Google Scholar