Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T21:43:14.090Z Has data issue: false hasContentIssue false

Bilinear and trilinear generating functions for Jacobi polynomials

Published online by Cambridge University Press:  24 October 2008

H. L. Manocha
Affiliation:
Punjab Engineering College, Department of Applied Sciences, Chandigarh, India

Extract

The writer in his paper (4) has shown that

where the Jacobi polynomial is defined as ((5), p. 255)

.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Chaundy, T. W.Expansions of hypergeometrie functions. Quart. J. Math. Oxford Ser. 13 (1942), 159171.Google Scholar
(2)Lauricella, G.Suelle Funzioni ipergeometriche a pui variabili. Rendiconti Mat. Palermo, T. vii (1893).Google Scholar
(3)Manocha, H. L. and Sharma, B. L.Some formulae for Jacobi polynomials. Proc. Cambridge Philos. Soc. 63 (1967), 431433.CrossRefGoogle Scholar
(4)Manocha, H. L.Some bilinear generating functions for Jacobi polynomials. Proc. Cambridge Philos. Soc. 63 (1967), 457459.CrossRefGoogle Scholar
(5)Rainville, E. D.Special functions (New York, 1960).Google Scholar