Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T11:47:28.034Z Has data issue: false hasContentIssue false

A Choquet theorem for general subspaces of vector-valued functions

Published online by Cambridge University Press:  24 October 2008

Paulette Saab
Affiliation:
Department of Mathematics, University of Missouri, Columbia, MO 65211, U.S.A.
Michel Talagrand
Affiliation:
Equipe d' Analyse, Université Paris VI, 75230 Paris Cedex 05, France

Extract

Let X be a compact Hausdorff space, let E be a (real or complex) Banach space, and let C(X, E) stand for the Banach space of all continuous E-valued functions defined on X under the supremum norm. If A is an arbitrary linear subspace of C(X, E), then it is shown that each bounded linear functional l on A can be represented by a boundary E*-valued vector measure μ on X that has the same norm as l. This result constitutes an extension to vector-valued functions of the so-called analytic version of Choquet's integral representation theorem.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Alfsen, E. M.. Compact convexs ets and boundary integrals. Ergebn. Math. Grenzgeb. 57 (1971).Google Scholar
[2]Bishop, E. and deLeeuw, K.. The representation of linear functionals by measures on sets of extreme points. Ann. Inst. Fourier (Grenoble). 8 (1959), 305331.CrossRefGoogle Scholar
[3]Choquet, G.. Lectures on Analysis, vol. II (Benjamin, 1969).Google Scholar
[4]Choquet, G.. Frontiére-module et représentation intégrate, Séminaire Choquet, Université de Paris (1971/3), no. 8, 4 pp.Google Scholar
[5]Diestel, J. and Uhl, J. J. Jr. Vector measures. Math. Surveys 15 (American Mathematical Society, 1977).CrossRefGoogle Scholar
[6]Fuhr, R. and Phelps, R. R.. Uniqueness of complex representing measures on the Choquet boundary. J. Fund. Anal. 14 (1973), 127.CrossRefGoogle Scholar
[7]Hiresberg, B.. Représentations intégrales des formes linéaires complexes. C. R. Acad. Sci. Paris Sér A, B 274 (1972), A1222–A 1224.Google Scholar
[8]Hustad, O.. A norm preserving complex Choquet theorem. Math. Scand. 29 (1971), 272278.CrossRefGoogle Scholar
[9]Phelps, R. R.. The Choquet representation in the complex case. Bull. Amer. Math. Soc. 83 (1977), 299312.CrossRefGoogle Scholar
[10]Saab, P.. Représentation intégrale dans des sous-espaces de fonctions à valeurs vectorielles. Séminaire Choquet, Université de Paris (1974/1975), no. 23, 10 pp.Google Scholar
[11]Saab, P.. The Choquet integral representation in the affine vector-valued case. Aequationes Math. 20 (1980), 252262.CrossRefGoogle Scholar
[12]Saab, P.. Integral representation by boundary vector measures. Canad. Math. Bull. 25 (2) (1982), 164168.CrossRefGoogle Scholar