Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T10:14:26.819Z Has data issue: false hasContentIssue false

Continuous images of proper analytic and proper Borel spaces

Published online by Cambridge University Press:  24 October 2008

J. E. Jayne
Affiliation:
Department of Mathematics, University College London

Extract

All topological spaces considered will be completely regular Hausdorff spaces. The word space will be used to refer to such a topological space.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Choquet, G.Ensembles boréliens et analytiques dans les espaces topologiques. C.R. Acad. Sci. Paris 232 (1951), 21742176.Google Scholar
(2)Choquet, G.Ensembles -analytiques et -Sousliniens. Cas général et cas metrique. Ann. Inst. Fourier (Grenoble) 9 (1959), 7581.CrossRefGoogle Scholar
(3)Filippov, V. V.On feathered paracompacta. Soviet Math. Dokl. 9 (1968), 161164.Google Scholar
(4)Frolík, Z.On analytic spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Atronom. Phys. 9 (1961), 721725.Google Scholar
(5)Frolík, Z.On bianalytic spaces. Czechoslovak Math. J. 13 (1963), 561573.CrossRefGoogle Scholar
(6)Frolík, Z.A survey of separable descriptive theory of sets. General Topology and its Relations to Modern Analysis and Algebra. 1. Proc. Symp. Prague (1961), 157173.Google Scholar
(7)Frolík, Z.A note on C(P) and Baire sets in compact and metrizable spaces. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 779784.Google Scholar
(8)Frolík, Z.A survey of separable descriptive theory of sets and spaces. Czechoslovak Math. J. 20 (1970), 406467.CrossRefGoogle Scholar
(9)Frolík, Z.Stone–Weierstrass theorems for C(X) with the sequential topology. Proc. Amer. Math. Soc. 27 (1971), 486494.Google Scholar
(10)Gillman, L. and Jerison, M.Rings of continuous functions (Van Nostrand Co.; Princeton, 1960).CrossRefGoogle Scholar
(11)Ishii, T.On closed mappings and M-spaces. II. Proc. Japan Acad. 43 (1967), 757761.Google Scholar
(12)Jayne, J. E.Topological representations of measurable spaces. General Topology and its Relations to Modern Analysis and Algebra. III. Proc. Symp. Prague (1971), 217221.Google Scholar
(13)Jayne, J. E. Characterizations and metrization of proper analytic spaces. To appear.Google Scholar
(14)Keldych, L.Sur les transformations ouvertes des ensembles A. C.R. Acad. Bulgare. Sci. 49 (1945), 622624.Google Scholar
(15)Kuratowski, K.Topology, Vol. I (Academic Press; New York, 1966).Google Scholar
(16)Morita, K.Some properties of M-spaces. Proc. Japan Acad. 43 (1967), 869872.Google Scholar
(17)Rogers, C. A.Descriptive Borel sets. Proc. Roy. Soc. Ser. A286 (1965), 455478.Google Scholar
(18)Taiˇmanov, A. D.On closed mappings. I. Mat. Sb. 36 (1955), 349352.Google Scholar
(19)Taiˇmanov, A. D.On open mappings of Borel sets. Mat. Sb. (N.S.) 37 (1955), 293300.Google Scholar
(20)Taiˇmanov, A. D. and Arhangel'skii˘, . On a theorem of V. Ponomarev. Soviet Math. Dokl. 1 (1960), 12421243.Google Scholar