Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T10:55:22.434Z Has data issue: false hasContentIssue false

Free subgroups of free abelian topological groups

Published online by Cambridge University Press:  24 October 2008

E. Katz
Affiliation:
Cleveland State University, Cleveland, OH 4415, U.S.A.
S. A. Morris
Affiliation:
La Trobe University, Bundoora, Vic. 3083, Australia
P. Nickolas
Affiliation:
University of Wollongong, Wollongong, N.S.W. 2500, Australia

Extract

In this paper we prove a theorem which gives general conditions under which the free abelian topological group F(Y) on a space Y can be embedded in the free abeian topological group F(X) on a space X.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hunt, D. C. and Morris, S. A.. Free subgroups of free topological groups. Proc. Second Internal. Conf. Theory of Groups, Canberra 1973, Lecture Notes in Math. vol. 372 (Springer-Verlag, 1974), 377387.Google Scholar
[2] Katz, E. and Morris, S. A.. On metrizable k ω-spaces. Math. Chronicle 12 (1983), 119122.Google Scholar
[3] Katz, E., Morris, S. A. and Nickolas, P.. A free subgroup of the free abelian topological group on the unit interval. Bull. London Math. Soc. 14 (1982), 399402.CrossRefGoogle Scholar
[4] Mack, J., Morris, S. A. and Ordman, E. T.. Free topological groups and the projective dimension of a locally compact abelian group. Proc. Amer. Math. Soc. 40 (1973), 303308.CrossRefGoogle Scholar
[5] Morris, S. A.. Free abelian topological groups. In Categorical Topology, Proc. Conference Toledo, Ohio, 1983 (Heldermann-Verlag, 1984), 375391.Google Scholar
[6] Morris, S. A. and Thompson, H. B.. Metrizability of free topological groups. Bull. Austral. Math. Soc. 33 (1986), 103112.CrossRefGoogle Scholar