Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T19:42:03.875Z Has data issue: false hasContentIssue false

Multiple images of stochastic processes

Published online by Cambridge University Press:  24 October 2008

Simeon M. Berman
Affiliation:
Courant Institute of Mathematical Sciences, New York University

Abstract

A simple sufficient condition is given for a stochastic process x(t), 0 ≤ t ≤ 1, to have the following property: There is an integer m ≥ 2 such that for any non-degenerate subinterval J ⊂ [0, 1], there exist m disjoint subintervals I1, …, ImJ such that the intersection of the images of I1,…, Im under the mapping by x(·) has positive Lebesgue measure, almost surely. There is also a version for vector random fields; and the main result is shown to apply to large classes of processes.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Adler, R. J.The geometry of random fields (John T. Wiley, New York, 1981).Google Scholar
(2)Berman, S. M.Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc. 137 (1969), 277299.CrossRefGoogle Scholar
(3)Berman, S. M.Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23 (1973), 6994.CrossRefGoogle Scholar
(4)Berman, S. M.Local times for stochastic processes which are subordinate to Gaussian processes. J. MuUivariate Anal. 12 (1982), 317335.Google Scholar
(5)Berman, S. M.Local nondeterminism and local times of general stochastic processes. Ann. Inst. Henri Poincaré 19 (1983), 189207.Google Scholar
(6)Cuzick, J. M.Local nondeterminism and the zeros of Gaussian processes. Ann. Probability 6 (1978), 7284.CrossRefGoogle Scholar
(7)Cuzick, J. M.Multiple points of a Gaussian vector field. Z. Wahrscheinlichkeitstheorie verw. Gebiete 61 (1982), 431436.CrossRefGoogle Scholar
(8)Geman, D. and Horowitz, J.Occupation densities. Ann. Probability 8 (1980), 167.CrossRefGoogle Scholar
(9)Geman, D., Horowitz, J. and Rosen, J. Measuring the intersection of Brownian paths in the plane. Preprint (1982).Google Scholar
(10)Hendricks, W. J.Multiple points for the transient symmetric Lévy processes in Rd. Z. Wahrscheinlichkeitstheorie verw. Gebiete 49 (1979), 1321.CrossRefGoogle Scholar
(11)Kono, N.Double points of a Gaussian sample path. Z. Wahrscheinlichkeitstheorie verw. Gebiete 45 (1978), 175180.CrossRefGoogle Scholar
(12)Lévy, P.Le mouvement brownien plan. Amer. J. Math. 62 (1940), 487550.CrossRefGoogle Scholar
(13)Pitt, L.Local times for Gaussian vector fields. Indiana Univ. Math. J. 27 (1978), 309330.CrossRefGoogle Scholar
(14)Rosen, J. A local time approach to the self-intersections of Brownian paths in space. Preprint (1981).Google Scholar
(15)Wolpert, R.Wiener path intersections and local time. J. Functional Anal. 30 (1978), 329340.CrossRefGoogle Scholar