On the Asymptotic Periods of Integral Functions
Published online by Cambridge University Press: 24 October 2008
Extract
A period of a function f(z) is defined to be a number ω (≠ 0) such that
is identically zero; and it can be shown that an integral function may either have no periods or else a single sequence kλ (k = ± 1, ± 2, …).
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 31 , Issue 4 , October 1935 , pp. 543 - 554
- Copyright
- Copyright © Cambridge Philosophical Society 1935
References
* Whittaker, J. M., Proc. Edinburgh Math. Soc. 3 (1933), 241–58CrossRefGoogle Scholar; 4 (1934), 77–8.
† Guichard, C., Annales Sci. de l' Ecole Normale, 4 (1887), 361–80.CrossRefGoogle Scholar
* Valiron, G., Integral functions (Toulouse, 1923), p. 41.Google Scholar
* Nörlund, N. E., Sur la “somme” d'une fonction (Paris, 1927), p. 10.Google Scholar
† Ibid., p. 8.
* Nörlund, N. E., Sur la “somme” d'une fonction (Paris, 1927), pp. 7, 8.Google Scholar
* See Titchmarsh, , Theory of Functions, p. 186.Google Scholar
* F., and Nevanlinna, R., Acta Soc. Sci. Fen. 50 (1922), 8.Google Scholar
* See F., and Nevanlinna, R., Acta Soc. Sci. Fen. 50 (1922), 22Google Scholar. Replace the imaginary by the real axis and write ø = θ − π/2.
* Cartwright, M. L., Proc. London Math. Soc. (2), 38 (1933), 158–79 (168)Google Scholar, Theorem III.
* Phragmén, E. and Lindelöf, E., Acta Math. 31 (1908), 381–406.CrossRefGoogle Scholar
* Whittaker, J. M., “On the asymptotic periods of integral functions”, Proc. Edinburgh Math. Soc. 3 (1933), 241–258.CrossRefGoogle Scholar
† Loc. cit. p. 242.
- 3
- Cited by