Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T01:01:16.616Z Has data issue: false hasContentIssue false

On the decomposition of spaces in Cartesian products and unions

Published online by Cambridge University Press:  24 October 2008

Tudor Ganea
Affiliation:
The University of BucarestCornell UniversityUniversity of Birmingham
Peter J. Hilton
Affiliation:
The University of BucarestCornell UniversityUniversity of Birmingham

Extract

The present paper is concerned with particular cases, obtained by suitably restricting the spaces involved, of the following general problem.

Given a topological space X, we ask whether there exist integers n ≥ 2 and non-contractible spaces X1, …, Xn such that X has the homotopy type of the Cartesian product X1, × … × Xn or of the union X1, v … v Xn.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1959

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Berstein, I.On the dimension of modules and algebras IX (Direct limita). Nagoya Math. J. 13 (1958), 83–4.Google Scholar
(2)Dowker, C. H.Topology of metrio complexes. Amer. J. Math. 74 (1952), 555–77.CrossRefGoogle Scholar
(3)Eckmann, B. and Helton, P. J.Groupes d'homotopie et dualité. C.R. Acad. Sci. Paris, 246 (1958), 2444–7, 2555–8, 2991–3.Google Scholar
(4)Eilenberg, S. and Ganea, T.On the Lusternik–Schnirelmann category of abstract groups. Ann. Math. 65 (1957), 517–18.Google Scholar
(5)Fox, R. H.On the Lusternik–Schnirelmann category. Ann. Math. 42 (1941), 333–70.Google Scholar
(6)Giever, J. B.On the equivalence of two singular homology theories. Ann. Math. 51 (1950), 178–91.CrossRefGoogle Scholar
(7)Hilton, P. J.On divisore and multiples of continuous maps. Fundam. Math. 43 (1956), 358–86.Google Scholar
(8)Van Kampen, E. R.On the connection between the fundamental groups of some related spaces. Amer. J. Math. 55 (1933), 261–7.Google Scholar
(9)Kurosch, A. G.Gruppentheorie (Berlin, 1953).Google Scholar
(10)Borsite, K.Über einige Probleme der anschaulichen Topologie. Jber. Dtsch. Mat Ver. 60 (1958), 101–14.Google Scholar