No CrossRef data available.
On the geodesic distance and group actions on trees
Published online by Cambridge University Press: 24 October 2008
Extract
The natural distance function on the vertices of a tree is a kernel of negative type. As a corollary, for any group G acting on a tree X, the length function |g| = d(υ, gυ) is a negative definite function on G for any given vertex υ of X.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 110 , Issue 1 , July 1991 , pp. 67 - 70
- Copyright
- Copyright © Cambridge Philosophical Society 1991
References
REFERENCES
‘1’Akemann, C. A. and Walter, M. E.. Unbounded negative definite functions. Canad. J. Math. 33 (1981), 862–871.Google Scholar
‘2’Alperin, R.. Locally compact groups acting on trees and property T. Monatsh. Math. 93 (1982), 261–265.Google Scholar
‘3’Berg, C., Christensen, J. P. R. and Ressel, P.. Harmonic Analysis on Semi groups. Graduate Texts in Math. no. 100 (Springer-Verlag, 1984).Google Scholar
‘4’Cartier, P.. Géométrie et analyse sur les arbres. In Sém. Bourbaki 1971é 407, Lecture Notes in Math. vol. 317 (Springer-Verlag, 1973), pp. 123–140.Google Scholar
‘5’Chiswell, I. M.. Abstract length functions in groups. Math. Proc. Cambridge Philos. Soc. 80 (1976), 451–463.CrossRefGoogle Scholar
‘6’Gromov, M.. Hyperbolic groups. In Essays in Group Theory (ed. Gersten, S. M.), MSRI publications vol. 8 (Springer-Verlag, 1987), pp. 75–263.Google Scholar
‘7’Haagerup, U.. An example of a non-nuclear C*-algebra which has the metric approximation property. Invent. Math. 50 (1979), 279–293.Google Scholar
‘8’Julg, P. and Valette, A.. K-Theoretic amenability for SL 2(ℚp), and the action on the associated tree. J. Funct. Anal. 58 (1984), 194–215.Google Scholar
‘10’Watatani, Y.. Property T of Kazhdan implies property FA of Serre. Math. Japon. (1) 27 (1982), 97–103.Google Scholar