No CrossRef data available.
Smooth derivations commuting with Lie group actions
Published online by Cambridge University Press: 24 October 2008
Extract
N. S. Poulsen, motivated in part by questions from relativistic quantum scattering theory, studied symmetric operators S in Hilbert space commuting with a unitary representation U of a Lie group G. (The group of interest in the physical setting is the Poincaré group.) He proved ([17], corollary 2·2) that if S is defined on the space of C∞-vectors for U (i.e. D(S) ⊇ ℋ∞(U)), then S is essentially self-adjoint.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 99 , Issue 2 , March 1986 , pp. 307 - 314
- Copyright
- Copyright © Cambridge Philosophical Society 1986
References
REFERENCES
[1]Arveson, W. B.. On groups of automorphisms of operator algebras. J. Funct. Anal. 15 (1974), 217–243.CrossRefGoogle Scholar
[2]Batty, C. J. K.. Small perturbations of C*-dynamical systems. Comm. Math. Phys. 68 (1979), 39–43.CrossRefGoogle Scholar
[3]Batty, C. J. K.. Derivations on compact spaces. Proc. London Math. Soc. (3) 42 (1981), 299–330.CrossRefGoogle Scholar
[4]Bratteli, O.. Derivations and Dissipations on Operator Algebras (RIMS, Kyoto University, Preprint 1985).Google Scholar
[5]Bratteli, O., Elliott, G. A. and Jorgensen, P. E. T.. Decomposition of unbounded derivations into invariant and approximately inner parts. J. Reine u. angew. Math. 346 (1984), 166–193.Google Scholar
[6]Bratteli, O. and Goodman, F. M.. Derivations tangential to compact group actions: Spectral conditions in the weak closure. Canad. J. Math. 37 (1985), 160–192.CrossRefGoogle Scholar
[7]Bratteli, O. and Jorgensen, P. E. T.. Unbounded derivations tangential to compact groups of automorphisms. J. Funct. Anal. 48 (1982), 107–133.CrossRefGoogle Scholar
[8]Bratteli, O. and Robinson, D. W.. Operator Algebras and Quantum Statistical Mechanics, vol. I (Springer-Verlag, 1979).CrossRefGoogle Scholar
[9]Davies, E. B.. A generation theorem for operators commuting with group actions. Math. Proc. Cambridge Philos. Soc. 96 (1984), 315–322.CrossRefGoogle Scholar
[10]de Laubenfels, R.. Powers of Generators of Holomorphic Semigroups (Preprint 1985).Google Scholar
[11]Goodman, F. M. and Jorgensen, P. E. T.. Unbounded derivatives commuting with compact group actions. Commun. Math. Phys. 82 (1981), 399–405.CrossRefGoogle Scholar
[12]Goodman, F. M. and Jorgensen, P. E. T.. Lie algebras of unbounded derivations. J. Funct. Anal. 52 (1983), 369–384.CrossRefGoogle Scholar
[13]Langlands, R. P.. Some holomorphic semigroups. Proc. Nat. Acad. Sci. U.S.A. 46 (1960), 361–363.CrossRefGoogle ScholarPubMed
[14]Longo, R.. Automatic relative boundedness of derivations in C *-algebras. J. Funct. Anal. 34 (1979), 21–28.CrossRefGoogle Scholar
[16]Peligrad, C.. Derivations of C *-algebras which are invariant under an automorphism group. In Topics in Modern Operator Theory, OT Ser. vol. 2 (Birkhauser-Verlag, 1981), pp. 259–268.CrossRefGoogle Scholar
[17]Poulsen, N. S.. On C ∞-vectors and intertwining bilinear forms for representations of Lie groups. J. Funct. Anal. 9 (1972), 87–120.CrossRefGoogle Scholar
[18]Sakai, S.. On one-parameter groups of *-automorphisms on operator algebras and the corresponding unbounded derivations. Amer J. Math. 98 (1976), 427–440.CrossRefGoogle Scholar