Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T16:34:08.783Z Has data issue: false hasContentIssue false

The Stone-Čech compactification of a topological semigroup

Published online by Cambridge University Press:  24 October 2008

J. W. Baker
Affiliation:
University of Sheffield
R. J. Butcher
Affiliation:
University of Sheffield

Extract

1. Introduction. Throughout this paper we shall take S to be a separately continuous, completely regular and Hausdorff, topological semigroup. We denote by Cb(S) the space of continuous and bounded complex-valued functions on S, and by βS the Stone-Čech compactification of S.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Berglund, J. F. and Hoffmann, K.Compact topological semigroups and weakly almost periodic functions (Lecture Notes in Mathematics, 42; Berlin, Springer-Verlag, 1967).CrossRefGoogle Scholar
(2)Butcher, R. J. Ph.D. Thesis, University of Sheffield, England, 1975.Google Scholar
(3)Ellis, R.Lectures on topological dynamics (W. A. Benjamin, New York, 1969).Google Scholar
(4)Grothendieck, A.Critères de compacité dans les espaces fonctionnels généraux. Amer. J. Math. 75 (1952), 168–;186.CrossRefGoogle Scholar
(5)Hewitt, E. and Ross, K. A.Abstract harmonic analysis, vol. I (Berlin, Springer-Verlag, 1963).Google Scholar
(6)Macri, N.The continuity of Arem product on the Stone-Čech compactification of semi-groups. Trans. Amer. Math. Soc. 191 (1974), 185193.Google Scholar
(7)Milnes, P.Compactifications of semitopological semigroups. J. Austral. Math. Soc. 15 (1973), 488503.CrossRefGoogle Scholar
(8)Mitchell, T.Topological semigroups and fixed points. Illinois J. Math. 14 (1970), 630641.CrossRefGoogle Scholar
(9)Olubummo, A.Finitely additive measures on the non-negative integers. Math. Scand. 24 (1969), 186194.CrossRefGoogle Scholar
(10)Pym, J. S.The convolution of linear functionals. Proc. London Math. Soc. 14 (1964), 431446.CrossRefGoogle Scholar
(11)Pym, J. S.The convolution of functionals on spaces of bounded functions. Proc. London Math. Soc. 15 (1965), 84104.Google Scholar
(12)Pym, J. S. and Vasudeva, H. L.An algebra of finitely additive measures. Studia Math. 54 (1975), 2940.CrossRefGoogle Scholar
(13)Pym, J. S. and Vasudeva, H. L.The algebraof finitely additive measures on a partially ordered semigroup. Studia Math. (To appear.)Google Scholar
(14)Pym, J. S. and Vasudeva, H. L. Semigroup structure in compactifications of ordered semigroups.Google Scholar
(15)Pym, J. S.Convolution algebras are not usually Arens-regular. Quart. J. Math. Oxford 25 (1974), 235240.CrossRefGoogle Scholar
(16)Ruppert, W.Rechtstopologische halbgruppen. J. Reine Angew. Math. 261 (1973), 123–133.Google Scholar
(17)Young, N. J.Semigroup algebras having regular multiplication. Studia Math. 47 (1973), 191196.CrossRefGoogle Scholar