Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T12:01:32.109Z Has data issue: false hasContentIssue false

Torsion and periods in some groups of homeomorphisms of the circle

Published online by Cambridge University Press:  24 October 2008

P. Greenberg
Affiliation:
Institut Fourier, BP 74, 38402 St Martin d'Heres Cedex, France

Extract

If g is an element of torsion of a group G, its order o(g) is the least positive integer such that go(g) = e. Let OG = {o(g);gG}. If G is a group of homeomorphisms of a space X, and if gG, xX let q(g, x) denote the cardinality of the g-orbit {gnx}nZ of x.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bleirer, S. and Casson, A.. Automorphisms of Surfaces after Nielsen and Thurston. London Math. Soc. Student Texts no. 9 (Cambridge University Press, 1990).Google Scholar
[2]Bieri, R. and Strebel, R.. Unpublished notes on groups of piecewise-linear homeomorphisms.Google Scholar
[3]Brown, K.. Finiteness Properties of Groups. J. Pure Appl. Algebra 44 (1987), 4575.CrossRefGoogle Scholar
[4]Greenberg, P.. Classifying spaces for foliations with isolated singularities. Trans. Amer. Math. Soc. 304 (1987), 417419.CrossRefGoogle Scholar
[5]Greenberg, P.. Pseudogroups from group actions. Amer. J. Math. 109 (1987), 893906.CrossRefGoogle Scholar
[6]Greenberg, P.. Pseudogroups of C 1 piecewise projective homeomorphisms. Pacific J. Math. 129 (1987), 6775.CrossRefGoogle Scholar
[7]Greenberg, P.. The Euler class for ‘piecewise”-groups, to appear.Google Scholar
[8]Greenberg, P.. Projective aspects of the Higman–Thompson group. Preprint.Google Scholar
[9]Ghys, E. and Sergiescu, V.. Sur un groupe remarquable de difféomorphismes du cercle. Comment. Math. Helv. 62 (1987), 185239.CrossRefGoogle Scholar
[10]Haefliger, A.. Homotopy and integrability. In Manifolds–Amsterdam 1970, Lecture Notes in Math. vol. 107 (Springer-Verlag, 1971), pp. 133163.Google Scholar
[11]Ott, M.. Gruppen von stückweise linearen Homömorphismen in der Ebene. Diplomarbeit, J. W. Goethe Universität, Frankfurt (1988).Google Scholar
[12]Shimura, G.. Introduction to the Arithmetic Theory of Automorphic Functions (Princeton University Press, 1971).Google Scholar