Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-20T13:29:36.972Z Has data issue: false hasContentIssue false

Comparing the globalness of bipartite unitary operations: delocalisation power, entanglement cost and entangling power

Published online by Cambridge University Press:  28 February 2013

AKIHITO SOEDA
Affiliation:
Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan Email: soeda@eve.phys.s.u-tokyo.ac.jp
MIO MURAO
Affiliation:
Institute for Nano Quantum Information Electronics, The University of Tokyo, Tokyo 113-0033, Japan Email: murao@phys.s.u-tokyo.ac.jp

Abstract

We compare three different characterisations of the globalness of bipartite unitary operations, namely, delocalisation power, entanglement cost and entangling power, to investigate the global properties of unitary operations. We show that the globalness of the same unitary operation depends on whether input states are given by unknown states representing pieces of quantum information or a set of known states for the characterisation. We extend our analysis of delocalisation power in two ways. First we show that the delocalisation power differs according to whether the global operation is applied to one piece or two pieces of quantum information. Then we introduce a new task called LOCC one-piece relocation, and prove that the controlled-unitary operations do not have enough delocalisation power to relocate one of two pieces of quantum information by adding LOCC.

Type
Paper
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by the Special Coordination Funds for Promoting Science and Technology, Institute for Nano Quantum Information Electronics.

References

Anders, J., Oi, D. K. L., Kashefi, E., Browne, D. E. and Andersson, E. (2010) Ancilla-driven universal quantum computation. Physical Review A 82 020301(R).CrossRefGoogle Scholar
Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R. and Peres, W. K. (1993) Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen Channels. Physical Review Letters 70 18951899.CrossRefGoogle ScholarPubMed
Chefles, A. (2005) Entangling capacity and distinguishability of two-qubit unitary operators. Physical Review A 72 042332.CrossRefGoogle Scholar
Donald, M. J., Horodecki, M. and Rudolph, O. (2002) The uniqueness theorem for entanglement measures. Journal of Mathematical Physics 43 42524272.CrossRefGoogle Scholar
Gottesman, D. (1997) Stabilizer codes and quantum error correction. arXiv:quant-ph/9705052.Google Scholar
Horodecki, M., Oppenheim, J. and Winter, A. (2005) Partial quantum information. Nature 436 673676.CrossRefGoogle ScholarPubMed
Horodecki, M., Oppenheim, J. and Winter, A. (2007) Quantum state merging and negative information. Communications in Mathematical Physics 269 107136.CrossRefGoogle Scholar
Horodecki, R., Horodecki, P., Horodecki, M. and Horodecki, K. (2009) Quantum entanglement. Reviews of Modern Physics 81 865942.CrossRefGoogle Scholar
Kraus, B. and Cirac, J. I. (2001) Optimal creation of entanglement using a two-qubit gate. Physical Review A 63 062309.CrossRefGoogle Scholar
Linden, N., Smolin, J. A. and Winter, A. (2009) Entangling and disentangling power of unitary transformations are not equal. Physical Review Letters 103 030501.CrossRefGoogle Scholar
Matsumoto, K. (2008) Self-teleportation and its applications on LOCC estimation and other tasks. arXiv:0809.3250.Google Scholar
Nielsen, M. A. (1999) Conditions for a class of entanglement transformations. Physical Review Letters 83 436.CrossRefGoogle Scholar
Nielsen, M. A., Dawson, C. M., Dodd, J. L., Gilchrist, A., Mortimer, D., Osborne, T. J., Bremner, M. J., Harrow, A. W. and Hines, A. (2003) Quantum dynamics as a physical resource. Physical Review A 67 052301.CrossRefGoogle Scholar
Plenio, M. and Virmani, S. (2007) An introduction to entanglement measures. Quantum Information and Computation 7 151.CrossRefGoogle Scholar
Raussendorf, R. and Briegel, H. J. (2001) A one-way quantum computer. Physical Review Letters 86 51885191.CrossRefGoogle ScholarPubMed
Soeda, A. and Murao, M. (2010) Delocalization power of global unitary operations on quantum information. New Journal of Physics 12 093013.CrossRefGoogle Scholar
Soeda, A., Turner, P. S. and Murao, M. (2011) Entanglement cost of implementing controlled-unitary operations. Physical Review Letters 107 180501.CrossRefGoogle ScholarPubMed
Wolf, M. M., Eisert, J. and Plenio, M. B. (2003) Entangling power of passive optical elements. Physical Review Letters 90 047904.CrossRefGoogle ScholarPubMed