Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T12:00:43.487Z Has data issue: false hasContentIssue false

Final coalgebras in accessible categories

Published online by Cambridge University Press:  27 July 2011

PANAGIS KARAZERIS
Affiliation:
Department of Mathematics, University of Patras, Patras, Greece Email: pkarazer@math.upatras.gr
APOSTOLOS MATZARIS
Affiliation:
Department of Mathematics, University of Patras, Patras, Greece Email: matzaris@master.math.upatras.gr
JIŘÍ VELEBIL
Affiliation:
Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic Email: velebil@math.feld.cvut.cz

Abstract

We propose a construction of the final coalgebra for a finitary endofunctor of a finitely accessible category and study conditions under which this construction is available. Our conditions always apply when the accessible category is cocomplete, and is thus a locally finitely presentable (l.f.p.) category, and we give an explicit and uniform construction of the final coalgebra in this case. On the other hand, our results also apply to some interesting examples of final coalgebras beyond the realm of l.f.p. categories. In particular, we construct the final coalgebra for every finitary endofunctor on the category of linear orders, and analyse Freyd's coalgebraic characterisation of the closed unit as an instance of this construction. We use and extend results of Tom Leinster, developed for his study of self-similar objects in topology, relying heavily on his formalism of modules (corresponding to endofunctors) and complexes for a module.

Type
Paper
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aczel, P., Adámek, J., Milius, S. and Velebil, J. (2003) Infinite trees and completely iterative theories: A coalgebraic view. Theoretical Computer Science 300 145.CrossRefGoogle Scholar
Adámek, J. (2003) On final coalgebras of continuous functors. Theoretical Computer Science 294 329.CrossRefGoogle Scholar
Adámek, J. (1997) A categorical generalisation of Scott domains. Mathematical Structures in Computer Science 7 419443.CrossRefGoogle Scholar
Adámek, J. and Rosický, J. (1994) Locally presentable and accessible categories, Cambridge University Press.CrossRefGoogle Scholar
Adámek, J., Borceux, F., Lack, S. and Rosický, J. (2002) A classification of accessible categories. Jour. Pure Appl. Alg. 175 730.CrossRefGoogle Scholar
Adámek, J., Herrlich, H. and Strecker, G. (1990) Abstract and concrete categories, John Wiley and Sons. (Available electronically as TAC reprint No. 17 at http://www.tac.mta.ca/tac/reprints/articles/17/tr17abs.html.)Google Scholar
Adámek, J., Milius, S. and Velebil, J. (2006) Iterative algebras at work. Mathematical Structures in Computer Science 16 10851131.CrossRefGoogle Scholar
America, P. and Rutten, J. J. M. M. (1989) Solving reflexive domain equations in a category of complete metric spaces. J. Comput. System Sci. 39 343375.CrossRefGoogle Scholar
Borceux, F. (1994) Handbook of categorical algebra (three volumes), Cambridge University Press.Google Scholar
van Breugel, F., Hermida, C., Makkai, M. and Worrell, J. (2007) Recursively defined metric spaces without contraction. Theoretical Computer Science 380 143163.CrossRefGoogle Scholar
Diers, Y. (1980a) Catégories multialgébriques. Arch. Math. (Basel) 34 193209.CrossRefGoogle Scholar
Diers, Y. (1980b) Catégories localement multiprésentables. Arch. Math. (Basel) 34 344356.CrossRefGoogle Scholar
Elgot, C. C. (1975) Monadic computation and iterative algebraic theories. In: Rose, H. E. and Shepherdson, J. C. (eds.) Logic Colloquium '73, North-Holland.Google Scholar
Elgot, C. C., Bloom, S. L. and Tindell, R. (1978) On the algebraic structure of rooted trees. J. Comput. System Sci. 16 361399.CrossRefGoogle Scholar
Engelking, R. (1989) General topology, Sigma Series in Pure Mathematics, Heldermann.Google Scholar
Freyd, P. (1999) Real coalgebra. (Posting to category theory mailing list, 22 Dec 1999, available electronically at http://www.mta.ca/~cat-dist/catlist/1999/realcoalg.)Google Scholar
Freyd, P. (2008) Algebraic real analysis. Theory and Applications of Categories 20 215306.Google Scholar
Gabriel, P. and Ulmer, F. (1971) Lokal präsentierbare Kategorien. Springer-Verlag Lecture Notes in Mathematics 221.Google Scholar
Goguen, J. A., Thatcher, S. W., Wagner, E. G. and Wright, J. B. (1977) Initial algebra semantics and continuous algebras. Journal ACM 24 6895.CrossRefGoogle Scholar
Johnstone, P. and Joyal, A. (1982) Continuous categories and exponentiable toposes. Jour. Pure Appl. Alg. 25 255296.CrossRefGoogle Scholar
Karazeris, P., Matzaris, A. and Velebil, J. (2011) Cofree coalgebras in accessible categories.CrossRefGoogle Scholar
Klin, B. (2007) Coalgebraic modal logic beyond sets. Electronic Notes in Theoretical Computer Science 173 177201.CrossRefGoogle Scholar
Lair, C. (1981) Catégories modelables et catégories esquissables. Diagrammes 6 L1L20.Google Scholar
Leinster, T. (2011) A general theory of self-similarity. Advances in Mathematics 226 29353017.CrossRefGoogle Scholar
Mac Lane, S. (1971) Categories for the working mathematician, Springer-Verlag.CrossRefGoogle Scholar
Makkai, M. and Paré, R. (1989) Accessible categories: The foundations of categorical model theory. Contemporary Mathematics 104, American Mathematical Society.CrossRefGoogle Scholar
Paré, R. (1973) Connected components and colimits. Jour. Pure Appl. Alg. 3 2142.CrossRefGoogle Scholar
Pavlović, D. and Pratt, V. (2002) The continuum as a final coalgebra. Theoretical Computer Science 280 105122.Google Scholar
Rutten, J. J. M. M. (2000) Universal coalgebra: A theory of systems. Theoretical Computer Science 249 380.CrossRefGoogle Scholar
Stone, A. H. (1979) Inverse limits of compact spaces. General Topology Appl. 10 (2)203211.CrossRefGoogle Scholar
Worrell, J. (2005) On the final sequence of a finitary set functor. Theoretical Computer Science 338 184199.CrossRefGoogle Scholar