No CrossRef data available.
Published online by Cambridge University Press: 26 February 2010
We obtain explicit lower bounds on the lattice packing densities δL of superballs G of quite a general nature, and we conjecture that as the dimension n approaches infinity, the bounds are asymptotically exact. If the conjecture were true, it would follow that the maximum lattice-packing density of the Iσ-ball is 2−n(1+σ(1)) for each σ in the interval 1 ≤ σ ≤ 2.