Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T14:59:38.212Z Has data issue: false hasContentIssue false

Galois module structure of classgroups and units

Published online by Cambridge University Press:  26 February 2010

M. Taylor
Affiliation:
Department of Mathematics, King's College, London
Get access

Extract

This paper arises from an attempt to generalise the following result of [1].

THEOREM (Armitage-Fröhlich). If K is a cyclic extension of Q of degree lr, where 2 has even order mod l, then

Type
Research Article
Copyright
Copyright © University College London 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Armitage, J. V. and Fröhlich, A.. “Classnumber and Unit Signatures”, Mathematika, 14 (1967), 9498.CrossRefGoogle Scholar
2.Gras, G. and Gras, M. N.. “Signatures des unités cyclotomiques et parité du nombre de classes des extensions cycliques de Q de degré premier impair” (to appear in Annales de l'lnstitut Fourier, Grenoble).Google Scholar
3.Gras, G.. “Signature des unités cyclotomiques et parité du nombre de classes des extensions abeliennes de Q de degré impair” (to appear in Bulletin de la Societe Math, de France).Google Scholar
4.Hecke, E.. Vorlesiwgen iiber die Theorie der algebaischen Zahlen (Chelsea, 1948).Google Scholar
5.Leopoldt, H. W.. “Zur Struktur der l-Klassengruppe galoisscher Zahlkörper”, J. fur reine und ange. Math., 199 (1958).Google Scholar
6.Oriat, B.. “Relation entre les 2-groupes des classes d'idéaux aux sens ordinaire et restreint de certains corps de nombres” (to appear).Google Scholar