Published online by Cambridge University Press: 26 February 2010
In this note those quotient groups of the absolute class group of number fields are to be studied which can be described in terms of absolutely Abelian fields. This investigation will be based on a suitable generalization of the classical concepts of the principal genus, the genus group and the genus field. One possible description of the genus group in a cyclic field is that as the maximal quotient group of the absolute class group which is characterized by rational congruence conditions, i.e. in terms of rational residue characters. From this point of view, however, the restriction to cyclic—or Abelian—fields is quite artificial; the given description can thus be taken as the definition of the genus group in any finite number field. In general the genus field will then no longer be absolutely Abelian; it can now be described as the maximal non-ramified extension obtained by composing the given field with absolutely Abelian fields.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.