No CrossRef data available.
Article contents
IN HONOUR OF PROFESSOR VLADIMIR MAZ’YA ON THE OCCASION OF HIS 75TH BIRTHDAY
Published online by Cambridge University Press: 06 May 2015
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Introduction
- Information
- Copyright
- Copyright © University College London 2015
References
Monographs by Vladimir Maz’ya
Burago, Yu. D. and Maz’ya, V. G., Potential Theory and Function Theory for Irregular Regions (Seminars in Mathematics 3), V. A. Steklov Mathematical Institute, Leningrad–Consultants Bureau (New York, 1969) translated from the Russian.Google Scholar
Cialdea, A. and Maz’ya, V., Semi-bounded Differential Operators, Contractive Semigroups and Beyond (Operator Theory, Advances and Applications 243), Birkhäuser (2014).CrossRefGoogle Scholar
Gelman, I. W. and Mazja, W. G., Abschätzungen für Differentialoperatoren im Halbraum (Mathematische Monographien 54), Akademie-Verlag (Berlin, 1981) , in German.CrossRefGoogle Scholar
Kozlov, V. and Maz’ya, V., Theory of a Higher-order Sturm–Liouville Equation (Lecture Notes in Mathematics 1659), Springer (Berlin, 1997).CrossRefGoogle Scholar
Kozlov, V. and Maz’ya, V., Differential Equations with Operator Coefficients, Springer (1999).CrossRefGoogle Scholar
Kozlov, V., Maz’ya, V. and Movchan, A., Asymptotic Analysis of Fields in Multistructures (Oxford Mathematical Monographs), Oxford Science Publications–Clarendon Press (Oxford, 1999).CrossRefGoogle Scholar
Kozlov, V. A., Maz’ya, V. G. and Rossmann, J., Elliptic Boundary Value Problems in Domains with Point Singularities (Mathematical Surveys and Monographs 52), American Mathematical Society (Providence, RI, 1997).Google Scholar
Kozlov, V. A., Maz’ya, V. G. and Rossmann, J., Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations (Mathematical Surveys and Monographs 85), American Mathematical Society (2000).CrossRefGoogle Scholar
Kresin, G. and Maz’ya, V., Sharp Real-Part Theorems. A Unified Approach (Lecture Notes in Mathematics 1903), Springer (2007).Google Scholar
Kresin, G. and Maz’ya, V., Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems (Mathematical Surveys and Monographs 183), American Mathematical Society (2012).CrossRefGoogle Scholar
Kuznetsov, N., Maz’ya, V. and Vainberg, B., Linear Water Waves. A Mathematical Approach, Cambridge University Press (2002).CrossRefGoogle Scholar
Mazja, W., Einbettungssätze für Sobolewsche Räume (Teubner-Texte zur Mathematik 27, 28), Teubner (Leipzig, 1979, 1980) two volumes, in German.Google Scholar
Mazja, W., Zur Theorie Sobolewscher Räume (Teubner-Texte zur Mathematik 38), Teubner (Leipzig, 1981) , in German.Google Scholar
Maz’ya, V. G., Sobolev Spaces, Leningrad University Press (Leningrad, 1985) , in Russian; English edition (translation from the Russian by T. O. Shaposhnikova), Springer, Berlin–New York, 1985.CrossRefGoogle Scholar
Maz’ya, V., Sobolev Spaces with Applications to Elliptic Partial Differential Equations (Grundlehren der Mathematischen Wissenschaften 342), Springer (2011).CrossRefGoogle Scholar
Maz’ya, V. G., Morozov, N. F., Plamenevskii, B. A. and Stupialis, L., Elliptic Boundary Value Problems (American Mathematical Society Translations, Series 2 123), American Mathematical Society (1984).CrossRefGoogle Scholar
Maz’ya, V., Movchan, A. and Nieves, M., Green’s Kernels and Meso-Scale Approximations in Perforated Domains (Lecture Notes in Mathematics 2077), Springer (2013).CrossRefGoogle Scholar
Maz’ya, V. G., Nazarov, S. A. and Plamenevskiĭ, B. A., Asymptotic Behavior of Solutions of Elliptic Boundary Value Problems under Singular Perturbations of the Domain, Tbilisi State University Press–Institut Priklady Matematika (Tbilisi, 1981) , in Russian.Google Scholar
Mazja, W. G., Nasarow, S. A. and Plamenewski, B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten (Mathematical Textbooks and Monographs 82, 83), Akademie-Verlag (Berlin, 1991) two volumes.Google Scholar
Maz’ya, V., Nazarov, S. and Plamenevskij, B., Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains (Operator Theory, Advances and Applications 111, 112), Birkhäuser (2000) two volumes.Google Scholar
Maz’ya, V. and Poborchi, S., Differentiable Functions on Bad Domains, World Scientific (1997).Google Scholar
Maz’ya, V. and Poborchi, S., Imbedding and Extension Theorems for Functions in Non-Lipschitz Domains, St-Petersburg University Publishers (2007).Google Scholar
Maz’ya, V. and Rossmann, J., Elliptic Equations in Polyhedral Domains (Mathematical Surveys and Monographs 162), American Mathematical Society (2010).CrossRefGoogle Scholar
Maz’ya, V. and Schmidt, G., Approximate Approximations (Mathematical Surveys and Monographs 141), American Mathematical Society (2007).CrossRefGoogle Scholar
Maz’ya, V. G. and Shaposhnikova, T. O., Theory of Multipliers in Spaces of Differentiable Functions (Monographs and Studies in Mathematics 23), Pitman (Boston, MA–London, 1985) ; Russian edition: Leningrad University Press, Leningrad, 1986.Google Scholar
Maz’ya, V. and Shaposhnikova, T., Jacques Hadamard, a Universal Mathematician (History of Mathematics 14), American Mathematical Society–London Mathematical Society (Providence, RI–London, 1998).Google Scholar
Maz’ya, V. and Shaposhnikova, T., Jacques Hadamard, un Mathématicien Universel, EDP Sciences (Paris, 2005).Google Scholar
Maz’ya, V. and Shaposhnikova, T., Jacques Hadamard, Legend of Mathematics, MCNMO Publishers (Moscow, 2008).Google Scholar
Maz’ya, V. and Shaposhnikova, T., Theory of Sobolev Multipliers with Applications to Differential and Integral Operators (Grundlehren der Mathematischen Wissenschaften 337), Springer (2009).Google Scholar
Maz’ya, V. and Soloviev, A., Boundary Integral Equations on Contours with Peaks (Operator Theory, Advances and Applications 196), Birkhäuser (2010).CrossRefGoogle Scholar