Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T03:49:53.176Z Has data issue: false hasContentIssue false

A note on porosity and the Mazur intersection property

Published online by Cambridge University Press:  26 February 2010

M. Jiménez Sevilla
Affiliation:
Dpto. de Análisis Matemático, Facultad de Ciencias Matematicas, Universidad Complutense de Madrid, Madrid, 28040, Spain. E-mail: marjim@sunaml.mat.ucm.es.
J. P. Moreno
Affiliation:
Dpto. de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain. E-mail: josepedro.moreno@uam.es
Get access

Extract

Let ℳ be the collection of all intersections of balls, considered as a subset of the hyperspace ℳ of all closed, convex and bounded sets of a Banach space, furnished with the Hausdorff metric. It is proved that ℳ is uniformly very porous if and only if the space fails the Mazur intersection property.

Type
Research Article
Copyright
Copyright © University College London 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chen, Donjian and Lin, Bor-Luh. Ball separation properties in Banach spaces. Rocky Mountain J. Math., 28 (1998), 835873.CrossRefGoogle Scholar
2.Chen, Donjian and Lin, Bor-Luh. On B-convex and Mazur sets of Banach spaces. Bull. Polish Acad. Sci. Math. 43 (1995), 191198.Google Scholar
3.Blasi, F. S. DeMyjak, J. and Papini, P. L.. Porous sets in best approximation theory. J. London Math. Soc., 44 (1991), 135142.CrossRefGoogle Scholar
4.Deville, R.Godefroy, G. and Zizler, V.. Smoothness and Renormings in Banach Spaces. Pitman Monograph and Surveys in Pure and Applied Mathematics, Vol. 64 (1993).Google Scholar
5.Deville, R. and Revalski, J.. Porosity of ill-posed problems. Proc. Amer. Math. Soc 128 (2000), 11171124.CrossRefGoogle Scholar
6.Georgiev, P. G.Granero, A. S.Sevilla, M. Jiménez and Moreno, J. P.. Mazur intersection properties and differentiability of convex functions in Banach spaces. J. London Math. Soc. 61 (2000), 531542.CrossRefGoogle Scholar
7.Giles, J. R.Gregory, D. A. and Sims, B.. Characterization of normed linear spaces with Mazur's intersection property. Bull. Austral. Math. Soc, 18 (1978), 471476.CrossRefGoogle Scholar
8.Gruber, P. M.. Baire categories in convexity. In eds. Gruber, P. M. and Wills, J. M., Handbook of Convex Geometry. North-Holland (1993), 13271346.CrossRefGoogle Scholar
9.Gruber, P. M.. The space of convex bodies. In eds. Gruber, P. M. and Wills, J. M., Handbook of Convex Geometry. North-Holland (1993), 301318.CrossRefGoogle Scholar
10.Sevilla, M. Jimenez and Moreno, J. P.. Renorming Banach spaces with the Mazur intersection property. J. Funct. Anal., 144 (1997), 486504.CrossRefGoogle Scholar
11.Kuratowski, K.. Topology I, Academic Press (New York-London, 1966).Google Scholar
12.Mazur, S.. Über schwache Konvergentz in den Raumen Lp, Studia Math., 4 (1993), 128133.CrossRefGoogle Scholar
13.Phelps, R. R.. Convex Functions, Monotone Operators and Differentiabilit., Lecture Notes in Math., 1364 (Springer Verlag, 1989; rev., 1993).CrossRefGoogle Scholar
14.Preiss, D. and Zajicek, L.. Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions, Proc. 11 th Winter School, Suppl. Rend. Circ. Mat. di Palermo, Ser. II, 3 (1984), 219223.Google Scholar
15.Zajicek, L.. Porosity and σ-porosity. Real Analysis Exchange, 13 (1987-88), 314350.CrossRefGoogle Scholar
16.Zamfirescu, T.. Porosity in convexity. Real Analysis Exchange, 15 (1989-90), 424436.CrossRefGoogle Scholar
17.Zamfirescu, T.. Baire categories in convexity. Atti Sent. Mat. Fis. Univ. Modena, 39 (1991), 139164.Google Scholar