Published online by Cambridge University Press: 26 February 2010
In this note we present a simple way of obtaining the universal field of fractions of certain free rings as a subfield of an ultrapower of a (by no means unique) skew field. This method of embedding was discovered by Amitsur in [1]; our presentation uses Cohn's specialization lemma and the embedding is constructed in terms of full matrices over the rings in question (Theorem 3.2). In particular, if k is an infinite commutative field, the universal field of fractions of a free k-algebra can be realized as a subfield of an ultrapower of any skew extension of k, with centre k, which is infinite dimensional over k. Thus many problems concerning the universal field of fractions of a free k-algebra can be settled by studying skew extensions of k of relatively simple structure. More precisely and more generally, let E be a skew field with centre k and denote by R the free E-ring on X over k. Write U for the universal field of fractions of R and assume that U embeds in an ultrapower of a skew field D. Then by Łos' theorem, U inherits the first-order properties of D which can be expressed by universal sentences.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.