No CrossRef data available.
Article contents
On surface Bieberbach groups
Published online by Cambridge University Press: 26 February 2010
Extract
Recall that a Poincaré Duality group G is said to be smoothly realisable when there exists a smooth closed manifold XG of homotopy type K(G, 1). In this note we prove
Theorem 1. Let
be an exact sequence of groups in which each Si is a Surface group, withfor i ≠ j, Ф is finite and G is torsion free. Then the Poincaré Duality group G is smoothly realisable.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 1987
References
1.Bieberbach, L.. Über die Bewegungsgruppen der Euklidischen Räume I. Math. Ann., 70 (1911), 297–336.CrossRefGoogle Scholar
2.Johnson, F. E. A.. Automorphisms of direct products of groups and their geometric realisations. Math. Ann., 263 (1983), 343–364.CrossRefGoogle Scholar
4.Johnson, F. E. A. and Wall, C. T. C.. On groups satisfying Poincare Duality. Ann. of Math., 96 (1972), 592–598.CrossRefGoogle Scholar
5.Kerckhofi, S. P.. The Nielsen realisation problem. Ann. of Math., 117 (1983), 235–265.Google Scholar
6.Neumann, H.. Varieties of groups. Ergebnisse der Mathematik no. 37 (Berlin, Springer, 1966).Google Scholar