Published online by Cambridge University Press: 26 February 2010
Introduction. Gale diagrams, and similar techniques, have been used in several recent investigations into the combinatorial properties of convex polytopes. Here we describe other applications, namely to problems concerning sections and projections of polytopes of a given combinatorial type. For example, in §4 we shall show that every n–dimensional convex polytope with at most n + 2 vertices possesses the universal shadow boundary (usb) property: If is a subcomplex of the boundary complex ℬ (P) of P, and set
is homeomorphic to an (n – 2)-sphere, then there exists a polytope P', combinatorially isomorphic to P, such that the complex
corresponding to
is a shadow boundary of P'. We shall also show that this is the best possible result in that polytopes with n + 3 or more vertices do not, in general, have the usb property. A second application of the method, to be described in §5, is to the construction of non-realisable complexes.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.