Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-20T03:14:44.509Z Has data issue: false hasContentIssue false

Convergence and summability factors in a sequence (II)

Published online by Cambridge University Press:  26 February 2010

L. S. Bosanquet
Affiliation:
Department of Mathematics, University College London, Gower Street, London. WC1E 6BT
Get access

Extract

1.1. In an earlier paper [6] the author proved

Theorem A. If α ≥ 0, β ≥ 0 (α, β integers), p > –1, p–r > –1 then necessary and sufficient conditions for a sequence (εn) to be such that

are

and

If α ≥ 1 (α an integer) and (ii) holds, then (i)bis equivalent to

Type
Research Article
Copyright
Copyright © University College London 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Andersen, A. F.. Studier over Cesàro's summabititetsmetode (Copenhagen Thesis, 1921).Google Scholar
2.Andersen, A. F.. Comparison theorems in the theory of Cesàro summability. Proc. London Math. Soc. (2), 27 (1928), 3971.CrossRefGoogle Scholar
3.Andersen, A. F.. On the extensions within the theory of Cesaro summability of a classical convergence theorem of Dedekind. Proc. London Math. Soc. (3), 8 (1958), 152.CrossRefGoogle Scholar
4.Bosanquet, L. S.. Note on the Bohr-Hardy theorem. J. London Math. Soc. (1), 17 (1942), 166173.CrossRefGoogle Scholar
5.Bosanquet, L. S.. Note on convergence and summability factors (III). Proc. London Math. Soc. (2), 50 (1949), 482496.Google Scholar
6.Bosanquet, L. S.. On convergence and summability factors in a sequence. Mathematika, 1 (1954), 2444.CrossRefGoogle Scholar
7.Bosanquet, L. S.. On the order of magnitude of fractional differences. The Golden Jubilee Commemoration Volume, Calcutta Math. Soc, (1958-1959), 161172.Google Scholar
8.Bosanquet, L. S.. An inequality for sequence transformations. Mathematika, 13 (1966), 2641.CrossRefGoogle Scholar
9.Bosanquet, L. S. and Tatchell, J. B.. A note on summability factors. Mathematika, 4 (1957), 2540.CrossRefGoogle Scholar
10.Chow, H. C.. Note on convergence and summability factors. J. London Math. Soc. (1), 29 (1954), 459476.CrossRefGoogle Scholar
11.Hardy, G. H.. Divergent series (Oxford University Press, 1949).Google Scholar
12.Knopp, K.. Beweis eines von I. Schur in die Theorie der C-Summierbarkeit aufgestellten Satzes. J.für Math., 187 (1949), 7074.Google Scholar
13.Kuttner, B.. On differences of fractional order. Proc. London Math. Soc. (3), 7 (1957), 453466.CrossRefGoogle Scholar