Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-25T02:47:40.108Z Has data issue: false hasContentIssue false

Use of date palm fibers as reinforcement for thermoplastic-based composites

Published online by Cambridge University Press:  07 March 2013

Noureddine Mahmoudi*
Affiliation:
Laboratory of numerical and experimental modelling of the mechanical phenomena, BP 882-RP, University of Mostaganem, 27000 Mostaganem, Algeria University of Relizane, Beremadia, 48000 Relizane, Algeria
*
aCorresponding author: mahmoudi.noureddine@yahoo.fr
Get access

Abstract

The use of natural fibers in the development of composite materials is a sector in full expansion. These fibers were used for their low cost, their availability and their renewable character. The fibers of the palm (palm tree) were used as reinforcement in polypropylene (PP). The date palm fibers have some potential because of their ecological and economic interest. Both unmodified and compatibilized fibers are used. Compatibilization was carried out with the use of maleic anhydride copolymers. The morphology and mechanical properties were characterized by electron microscopy scanning (SEM) and tensile tests. The influence of fiber content on mechanical properties of composite PP/date palm has been evaluated and demonstrated, that the maximum stress and elongation decreases with increasing fiber volume rate. On the other hand, an increase of the tensile modulus has been noticed, but after the fibers improvement, the maximum stress increases significantly up to 25% weight.

Type
Research Article
Copyright
© AFM, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Joseph, P.V., Joseph, K., Thomas, S., Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites, Compos. Sci. Technol. 59 (1999) 16251640 http://dx.doi.org/10.1016/S0266-3538(99)00024-X CrossRefGoogle Scholar
Woodhams, R.T., Thomas, G., Rodgers, D.K., Wood fibers as reinforcing fillers for polyolefins, Polym. Eng. Sci. 24 (1984) 11661171 CrossRefGoogle Scholar
Zampaloni, M., Pourboghrat, F., Yankovich, S.A., Rodgers, B.N., Moore, J., Drzal, L.T., Mohanty, A.K., Misra, M., Kenaf natural fiber reinforced polypropylene composites: A discussion on manufacturing problems and solutions, Compos.: Part A 38 (2007) 15691580 http://dx.doi.org/10.1016/j.compositesa.2007.01.001 CrossRefGoogle Scholar
Fung, K.L., Xing, X.S., Li, R.K.Y., Tjong, S.C., Mai, Y.W., An investigation on the processing of sisal fibre reinforced polypropylene composites, Compos. Sci. Technol. 63 (2003) 12551258 http://dx.doi.org/10.1016/S0266-3538(03)00095-2 CrossRefGoogle Scholar
Bledzki, A.K., Mamun, A.A., Faruk, O., Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites, Express Polym. Lett. 1 (2007) 755762 CrossRefGoogle Scholar
A. Kriker, G. Debicki, A. Bali, M.M. Khenfer, M. Chabannet, Mechanical properties of date palm fibres and concrete reinforced with date palm fibres in hot-dry climate, Cement Concrete Compos. (2005) 554–564
Tolëdo, F.R.D., scrivener, K., England, G., Ghavami, K., Durability of alkali-sensitive sisal and coconut fibers in cement mortar composites, Cement Concrete Compos. 22 (2OOO) 127143 CrossRefGoogle Scholar
Gram, H., Durability of natural fibers in concrete, Swedish Cement Concrete Res. 83 (1983) 255 Google Scholar
Bledzki, A.K., Gassan, J., Composites reinforced with cellulose based fibers, Progress polym. Sci. 24 (1999) 221274 CrossRefGoogle Scholar
L. Nilson, Reinforced Concrete with Sisal and other vegetal fibre, Swedish Council for Building Research, 1975
Ayyar, T.S.R., Mirihagalla, P.K., Elephant grass fibers and reinforcing fiber, Magazine Concrete Res. 28 (1976) 16267 Google Scholar
Coutts, R.S.P., Flax fibers as a reinforcement in cement mortar, Int. J. Cement Compos. Lightweight Concrete 5 (1983) 257262 CrossRefGoogle Scholar
Tolëdo, F.R.D., Ghavami, K., Englan, D., Scrivener, K., Development of vegetal fibres-mortar composites of improved durability, Cement Concrete Compos. 25 (2003) 12 Google Scholar
Fung, K.L., Xing, X.S., Li, R.K.Y., Tjong, S.C., Mai, Y.-W., An investigation on the processing of sisal fibre reinforced polypropylene composites, Compos. Sci. Technol. 63 (2003) 12551258 http://dx.doi.org/10.1016/S0266-3538(03)00095-2 CrossRefGoogle Scholar
Bhattacharyya, D., Bowis, M., Jayaraman, K., Thermoforming wood fibre-polypropylene composite sheets, Compos. Sci. Technol. 63 (2003) 353365 http://dx.doi.org/10.1016/S0266-3538(02)00214-2 CrossRefGoogle Scholar
Vilaseca, F., Gonzalez, A.V., Franco, P.J.H., Pèlach, M.A., López, J.P., Mutjé, P., Biocomposites from abaca strands and polypropylene, Part I: Evaluation of the tensile properties, Bioresource Technology 101 (2010) 387395 CrossRefGoogle ScholarPubMed
Mutjé, P., Lopez, A., Vallejos, M.E., Lopez, J.P., Vilaseca, F., Full exploitation of cannabis sativa as reinforcement/filler of thermoplastic composite materials, Composites: Part A 38 (2007) 369 CrossRefGoogle Scholar
Thwe, M.M., Liao, K., Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites, Composites: Part A 33 (2002) 4352 http://dx.doi.org/10.1016/S1359-835X(01)00071-9 CrossRefGoogle Scholar
Rana, A.K., Mandal, A., Bandyopadhyay, S., Short jute fiber reinforced polypropylene composites: effect of compatibiliser, impact modifier and fiber loading, Compos. Sci. Technol. 63 (2003) 801806 http://dx.doi.org/10.1016/S0266-3538(02)00267-1 CrossRefGoogle Scholar
Vilaseca, F., Mendez, J.A., Pelach, A., Llop, M., Canigueral, N., Girones, J., Turon, X., Mutje, P., Composite materials derived from biodegradable starch polymer and jute strands, Process Biochem. 42 (2007) 329334 CrossRefGoogle Scholar
Pillai, K.M., Modeling the unsaturated flow in liquid composite molding processes: A review and some thoughts, J. Compos. Mater. 38 (2004) 20972118 CrossRefGoogle Scholar
Patel, N., Rohatgi, V., Lee, L.J., Micro scale flow behavior and void formation mechanism during impregnation through a unidirectional stitched fiberglass mat, J. Compos. Mater. 35 (1995) 837851 Google Scholar
Chen, Y.-T, Macosko, C.W., Davis, H.T., Wetting of fiber mats for composites manufacturing: II. Air entrapment model, J. Compos. Mater. 41 (1995) 22742281 Google Scholar
Rezaur Rahman, Md., Monimul Huque, Md., Nazrul Islam, Md., Hasan, Mahbub, Improvement of physicomechanical properties of jute fiber reinforced polypropylene composites by post-treatment, Composites: Part A 39 (2008) 17391747 CrossRefGoogle Scholar
Wambua, P., Ivens, J., Verpoest, I., Natural fibres: can they replace glass in fibre reinforced plastics, Compos. Sci. Technol. 63 (2003) 12591264 http://dx.doi.org/10.1016/S0266-3538(03)00096-4 CrossRefGoogle Scholar
Belgacem, M.N., Gandini, A., The surface modification of cellulose fibres for use as reinforcing elements in composite materials, Compos. Inter. 12 (2005) 41 http://dx.doi.org/10.1590/S0104-14282005000200010 CrossRefGoogle Scholar
Anglès, M.N., Salvado, J., Dufresne, A., Steam-exploded residual softwood-filled polypropylene composites, J. Appl. Polym. Sci. 74 (1999) 1962 3.0.CO;2-X>CrossRefGoogle Scholar
Caulfield, D.F., Feng, D., Prabawa, S., Young, R.A., Sanadi, A.R., Interphase effects on the mechanical and physical aspects of natural fiber composites, Die Angewandte Makromolekulare Chemie 272 (1999) 57 3.0.CO;2-W>CrossRefGoogle Scholar
Malainine, M.E., Mahrouz, M., Dufresne, M.A., Lignocellulosic flour from cladodes of Opuntia ficus-indica reinforced polypropylene composites, Macromol. Mater. Eng. 289 (2004) 855 CrossRefGoogle Scholar
Faria, H., Cordeiro, N., Belgacem, M.N., Dufresne, A., Dwarf Cavendish as a source of natural fibers in poly(propylene)-based composites, Macromol. Mat. Eng. 291 (2006) 16 CrossRefGoogle Scholar
Ismail, H., Edyhan, M., Wirjosentono, B., Bamboo fiber filled natural rubber composites: the effects of filler loading and bonding agent, Polymer Testing 21 (2002) 39144 CrossRefGoogle Scholar
Joseph, S., Sreekala, M.S., Oommen, Z., Koshy, P., Thomas, S., A comparison of mechanical properties of phenol formaldehyde composites reinforced with banana fibers and glass fibers, Compos. Sci. Technol. 62 (2002) 18571868 CrossRefGoogle Scholar
Andonian, A.L., Mai, Y.W., Cotterell, B., Strength and fracture properties of cellulose fibers reinforced cement composites, Int. J. Cement Compos. Lightwigh Concrete 11 (1979) 151158 Google Scholar
M.M. Khenfer, P. Morlier, Effet de la longueur des fibres sur les propriétés mécaniques des ciments renforcés de fibres cellulosiques, Mater. Struct. (1991) 185–190
Bledzki, A.K., Gassan, J., Composites reinforced with cellulose based fibers, Progress Polym. Sci. 24 (1999) 221274 CrossRefGoogle Scholar
M. Sotton, Perspectives de développement textiles et technique de lin, Journées d’échanges Franco-Allemands sur le lin, Rouen, 1992
F.A.L. Dullien, Porous media: fluid transport and pore structure, second edition, 1995, 48, B37–B37