Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-04T15:10:42.456Z Has data issue: false hasContentIssue false

INSECTS IN THERMAL SPRINGS

Published online by Cambridge University Press:  31 May 2012

Gordon Pritchard*
Affiliation:
Division of Ecology, Department of Biological Sciences, The University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada T2N 1N4
Get access

Abstract

Thermal springs are characterized by year-round high temperatures and a total-dissolved-solids concentration that is generally higher than that of surface waters. Insects appear to encounter few constraints from the water chemistry of most thermal springs, but considerable constraint from the high water temperature. Indeed, because no insect lives above 50 °C and very few above 40 °C, few thermal springs offer favorable conditions for insects in the actual boil itself. Thermal spring insects live in the stream at some distance from the source, and they may be defined as living in habitats having temperature regimens that are influenced by geothermy in the sense that they are warmer than they otherwise would be. An annual mean water temperature that is 5 °C above the annual mean air temperature of the region can be used to define the downstream limit of geothermal influence.Thermal springs around the world have similar insect faunas; only four orders (Diptera, Coleoptera, Hemiptera, Odonata) are commonly represented, and each of these only by a handful of genera. Furthermore, the fauna of any one thermal spring is characterized by very few species, and the higher the temperature the lower the species richness. Both temperature and water chemistry may exclude certain species, and even whole orders, from thermal springs, these factors acting either directly, alone or in concert, or indirectly through competitive interactions. Even moderately warmed systems can significantly affect insect growth rates, and seasonal regulation of adult emergence through diapause is a common strategy of temperate-zone thermal spring insects.Thermal springs present many advantages to the ecologist, such as long-term habitat constancy, temperature stability, and taxonomic simplicity. They provide field laboratories for the study of temperature-related phenomena as well as the opportunity to explore a range of questions in biogeography and evolutionary biology. The challenge is to form the questions and select the systems critically.

Résumé

Les sources thermales sont caractérisées par des températures élevées à longeur de l'année et par une concentration de solides dissous généralement plus élevée que celle des eaux de surface. Les insectes semblent rencontrer peu de contraintes liées à la chimie de l'eau de la plupart de sources thermales, mais rencontrent par contre une contrainte considérable due à la température élevée de l'eau. Certes, parce qu'aucun insecte ne vit à une température au-dessus de 50 °C et très peu d'entre eux à une température au-dessus de 40 °C, peu de sources thermales offrent des conditions favorables aux insectes dans les endroits immédiats où ces eaux font surface. Les insectes des sources thermales vivent dans le cours d'eau à quelque distance de l'origine de la source et peuvent être définis comme vivant dans les habitats ayant des régimes de température influencés par géothermie, dans le sens qu'ils sont plus chauds qu'ils auraient été autrement. Une température moyenne annuelle de l'eau, qui se trouve 5 °C au-dessus de la température moyenne annuelle de l'air de la région, pourrait servir à définir la limite d'influence géothermique en aval.

Les sources thermales du monde entier ont des faunes entomologiques semblables : seulement quatre ordres (Diptera, Coleoptera, Hemiptera, Odonata) sont normalement présents et chacun d'eux présente seulement quelques genres. De plus, la faune d'une source thermale est caractérisée par très peu d'espèces, et plus la température est élevée plus la diversité est faible. La température et la chimie de l'eau peuvent exclure certaines espèces, et même des ordres en entiers, des sources thermales, ces deux facteurs agissant soit directement, seuls ou en concert, ou indirectement à travers des interactions compétitives. Même des systèmes qui sont modérément chauds peuvent influencer significativement le taux de croissance des insectes et la régulation saisonnière de l'émergence des insectes adultes par la diapause est une stratégie commune chez les insectes des sources thermales des zones tempérées.

Les sources thermales présentent plusieurs avantages à l'écologiste, à savoir : constance à long terme de l'habitat; stabilité de la température; et simplicité taxinomique. Elles fournissent des laboratoires de terrain pour l'étude des phénomènes reliés à la température en plus de donner l'occasion de rechercher une foule de questions reliées à la biogéographie et à la biologie évolutionniste. Le défi est de formuler les questions et de sélectionner soigneusement les systèmes.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnby, M.A. 1987. Osmotic and ionic regulation of two brine fly species (Diptera: Ephydridae) from a saline hot spring. Physiol. Zool. 60: 327338.Google Scholar
Barnby, M.A., and Resh, V.H.. 1988. Factors affecting the distribution of an endemic and a widespread species of brine fly (Diptera: Ephydridae) in a northern California thermal saline spring. Ann. ent. Soc. Am. 81: 437446.Google Scholar
Bradley, T.J. 1987. Physiology of osmoregulation in mosquitoes. A. Rev. Ent. 32: 439462.Google Scholar
Bradshaw, A.D., and Hardwick, K.. 1989. Evolution and stress — genotypic and phenotypic components. Biol. J. Linn. Soc. 37: 137155.Google Scholar
Brittain, J.E. 1982. Biology of mayflies. A. Rev. Ent. 27: 119147.Google Scholar
Brock, M.L., Weigert, R.G., and Brock, T.D.. 1969. Feeding by Paracoenia and Ephydra (Diptera: Ephydridae) on the microorganisms of hot springs. Ecology 50: 192200.Google Scholar
Brock, T.D. 1967. Relationship between standing crop and primary productivity along a hot spring thermal gradient. Ecology 48: 566571.Google Scholar
Brock, T.D. 1970. High temperature systems. A. Rev. Ecol. Syst. 1: 191220.Google Scholar
Brock, T.D. 1975. Predicting the ecological consequences of thermal pollution from observations in geothermal habitats, pp. 599622in Environmental Effects of Cooling Systems at Nuclear Power Plants. Proceedings Series, International Atomic Energy Agency, Vienna.Google Scholar
Brock, T.D., and Brock, M.L.. 1966. Temperature optima for algal development in Yellowstone and Iceland hot springs. Nature, Lond. 209: 733734.Google Scholar
Brock, T.D., and Brock, M.L.. 1968. Life in a hot water basin. Nat. Hist. 77: 4754.Google Scholar
Brock, T.D., and Brock, M.L.. 1969. Effect of light intensity on photosynthesis by thermal algae adapted to natural and reduced sunlight. Limnol. Oceanogr. 14: 334341.Google Scholar
Brues, C.T. 1924. Observations on animal life in the thermal waters of Yellowstone Park, with a consideration of the thermal environment. Proc. Am. Acad. Arts Sci. 59: 371437.Google Scholar
Brues, C.T. 1927. Animal life in hot springs. Q. Rev. Biol. 2: 181203.Google Scholar
Brues, C.T. 1928. Studies on the fauna of hot springs in the western United States and the biology of thermophilous animals. Proc. Am. Acad. Arts Sci. 63: 139228.Google Scholar
Brues, C.T. 1932. Further studies on the fauna of North American hot springs. Proc. Am. Acad. Arts Sci. 67: 186303.Google Scholar
Brundin, L. 1967. Insects and the problem of austral disjunctive distribution. A. Rev. Ent. 12: 149168.Google Scholar
Colburn, E.A. 1983. Effect of elevated temperature on osmotic and ionic regulation in a salt-tolerant caddisfly from Death Valley, California. J. Insect Physiol. 29: 363369.Google Scholar
Colburn, E.A. 1988. Factors influencing species diversity in saline waters of Death Valley, USA. Hydrobiologia 158: 215226.Google Scholar
Collins, N.C. 1975. Population biology of a brine fly (Diptera: Ephydridae) in the presence of abundant food. Ecology 56: 11391148.Google Scholar
Collins, N.C. 1977. Mechanisms determining the relative abundance of brine flies (Diptera: Ephydridae) in Yellowstone thermal spring effluents. Can. Ent. 109: 415422.Google Scholar
Collins, N.C., Mitchell, R., and Wiegert, R.G.. 1976. Functional analysis of a thermal spring ecosystem with an evaluation of the role of consumers. Ecology 57: 12211232.Google Scholar
Conrad, K.F., and Pritchard, G.. 1988. The reproductive behavior of Argia vivida Hagen: An example of a female-control mating system (Zygoptera: Coenagrionidae). Odonatologica 17: 179185.Google Scholar
Conrad, K.F., and Pritchard, G.. 1989. Female dimorphism and physiological colour change in the damselfly Argia vivida Hagen (Odonata: Coenagrionidae). Can. J. Zool. 67: 298304.Google Scholar
Conrad, K.F., and Pritchard, G.. 1990. Pre-oviposition mate-guarding and mating behaviour of the damselfly Argia vivida (Odonata: Coenagrionidae). Ecol. Ent. 15: 363370.Google Scholar
Corbet, P.S. 1962. A Biology of Dragonflies. Witherby, London.Google Scholar
Corbet, P.S. 1980. Biology of Odonata. A. Rev. Ent. 25: 189217.Google Scholar
Dowries, J.A., and Kavanaugh, D.H.. 1988. Symposium, origins of the North American insect fauna: Introduction and commentary, pp. 1–11 in Downes, J. A., and Kavanaugh, D.H. (Eds.), Origins of the North American Insect Fauna. Mem. ent. Soc. Can. 144. 168 pp.Google Scholar
Dunson, W.A. 1980. Adaptations of nymphs of a marine dragonfly, Erythrodiplax berenice, to wide variations in salinity. Physiol. Zool. 53: 445452.Google Scholar
Eriksen, C.H. 1984. The physiological ecology of larval Lestes disjunctus Selys (Zygoptera: Odonata). Freshwater Invert. Biol. 3: 105117.Google Scholar
Eriksen, C.H. 1986. Respiratory roles of caudal lamellae (gills) in a lestid damselfly (Odonata: Zygoptera). J. N. Am. benthol. Soc. 5: 1627.Google Scholar
Ernst, M.R., Beitinger, T.L., and Stewart, K.W.. 1984. Critical thermal maxima of nymphs of three Plecoptera species from an Ozark foothill stream. Freshwater Invert. Biol. 3: 8085.Google Scholar
Forbes, A.T., and Allanson, B.R.. 1970. Ecology of the Sundays River Part II. Osmoregulation in some mayflynymphs (Ephemeroptera: Baetidae). Hydrobiologia 36: 489503.Google Scholar
Fretwell, S.D. 1987. Food chain dynamics: The central theory of ecology? Oikos 50: 291301.Google Scholar
Garten, C.T., and Gentry, J.B.. 1976. Thermal tolerance of dragonfly nymphs. II. Comparison of nymphs from control and thermally altered environments. Physiol. Zool. 49: 206213.Google Scholar
Goodchild, A.J.P. 1969. The rectal glands of Halosalda lateralis Fallen (Hemiptera: Saldidae) and Hydrometra stagnorum (L.) (Hemiptera: Hydrometridae). Proc. R. ent. Soc. Lond. 44: 6270.Google Scholar
Graur, D. 1985. Gene diversity in Hymenoptera. Evolution 39: 190199.Google Scholar
Greenslade, P.J.M. 1983. Adversity selection and the habitat templet. Am. Nat. 122: 352365.Google Scholar
Grime, J.P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111: 11691194.Google Scholar
Heiman, D.R., and Knight, A.W.. 1972. Upper-lethal-temperature relations of the nymphs of the stonefly, Paragnetina media. Hydrobiologia 39: 479493.Google Scholar
Herbst, D.B. 1988. Comparative population ecology of Ephydra hians Say (Diptera: Ephydridae) at Mono Lake (California) and Abert Lake (Oregon). Hydrobiologia 158: 145166.Google Scholar
Herbst, D.B., Conte, F.P., and Brookes, V.J.. 1988. Osmoregulation in an alkaline salt lake insect, Ephydra (Hydropyrus) hians Say (Diptera: Ephydridae) in relation to water chemistry. J. Insect Physiol. 34: 903909.Google Scholar
Hildrew, A.G., and Townsend, C.R.. 1987. Organization in freshwater benthic communities, pp. 347372in Gee, J.H.R., and Giller, P.S. (Eds.), Organization of Communities Past and Present. 27th Symposium of the British Ecological Society; Aberystwyth 1986. Blackwell, Oxford.Google Scholar
Hinnekint, B.O.N. 1972. Thermal pollution as a probable cause of a winter ecdysis of Aeshna cyanea (Miiller) (Anisoptera: Aeshnidae). Odonatologica 1: 163164.Google Scholar
Hochachka, P.W., and Somero, G.N.. 1984. Biochemical Adaptation. Princeton University Press, Princeton, NJ.Google Scholar
Howell, F.G., and Gentry, J.B.. 1974. Effect of thermal effluents from nuclear reactors on species diversity of aquatic insects, pp. 562571in Gibbons, J.W., and Sharitz, R.R. (Eds.), Thermal Ecology. Atomic Energy Commission Symposium Series (Conf. 730505). Augusta, GA.Google Scholar
Huey, R.B., and Kingsolver, J.G.. 1989. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4: 131135.Google Scholar
Hynes, H.B.N. 1976. Biology of Plecoptera. A. Rev. Ent. 21: 135153.Google Scholar
Inland Waters Directorate. 1975. Water quality data. Alberta 1961–1973. Environment Canada, Ottawa.Google Scholar
Kohno, M. 1983. Plecoptera nymphs inhabiting hot springs and the scientific name of Neoperla niponensis (McLachlan). Nature and Insects 18: 5657. [In Japanese.]Google Scholar
Komnick, H. 1977. Chlorine cells and chloride epithelia of aquatic insects. Int. Rev. Cytol. 49: 285329.Google Scholar
Lamberti, G.A., and Resh, V.H.. 1983. Geothermal effects on stream benthos: Separate influences of thermal and chemical components. Can. J. Fish. Aquat. Sci. 40: 19952009.Google Scholar
Lamberti, G.A., and Resh, V.H.. 1985. Distribution of benthic algae and macroinvertebrates along a thermal stream gradient. Hydrobiologia 128: 1321.Google Scholar
Lange, W.H. 1984. Aquatic and semiaquatic Lepidoptera. pp. 348360in Merritt, R.W., and Cummins, K.W. (Eds.), An Introduction to the Aquatic Insects of North America. Kendall/Hunt, Dubuque, IA.Google Scholar
Leader, J.P. 1976. Marine caddis flies (Trichoptera: Philanisidae). pp. 291302in Cheng, L. (Ed.), Marine Insects. Elsevier, New York, NY.Google Scholar
Leggott, M., and Pritchard, G.. 1985. The effect of temperature on rate of egg and larval development in populations of Argia vivida Hagen (Odonata: Coenagrionidae) from habitats with different thermal regimes. Can. J. Zool. 63: 25782582.Google Scholar
Leggott, M., and Pritchard, G.. 1986. Thermal preference and activity thresholds in populations of Argia vivida (Odonata: Coenagrion-idae) from habitats with different thermal regimes. Hydrobiologia 140: 8592.Google Scholar
Marshall, A.T., and Wright, A.. 1974. Ultrastructure changes associated with osmoregulation in the hind gut cells of a saltwater insect, Ephydrella sp. (Ephydridae: Diptera). Tissue and Cell 6: 301318.Google Scholar
Martin, W.J., and Gentry, J.B.. 1974. Effect of thermal stress on dragonfly nymphs, pp. 133145in Gibbons, J.W., and Sharitz, R.R. (Eds.), Thermal Ecology. Atomic Energy Commission Symposium Series (Conf. 730505). Augusta, GA.Google Scholar
Martin, W.J., Garten, C.T, and Gentry, J.B.. 1976. Thermal tolerances of dragonfly nymphs. I. Sources of variation in estimating critical thermal maximum. Physiol. Zool. 49: 200205.Google Scholar
Mattice, J.S., and Dye, L.L.. 1978. Effect of a steam electric generating station on the emergence timing of the mayfly, Hexagenia bilineata (Say). Verh. int. Verein. theor. angew. Limnol. 20: 17521758.Google Scholar
Minshall, G.W. 1988. Stream ecosystem theory: A global perspective. J. N. Am. benthol. Soc. 7: 263288.Google Scholar
Mitchell, R. 1974. The evolution of thermophily in hot springs. Q. Rev. Biol. 49: 229242.Google Scholar
Moens, J. 1975. Ionic regulation in the haemolymph of the dragonfly, Aeshna cyanea. Arch. int. Physiol. Biochem. 83: 443451.Google Scholar
Mutch, R.A., and Davies, R.W.. 1984. Processing of willow leaves in two Alberta Rocky Mountain streams. Holarctic Ecol. 7: 171176.Google Scholar
Mutch, R.A., and Pritchard, G.. 1986. Development rates of eggs of some Canadian stoneflies (Plecoptera) in relation to temperature. J. N. Am. benthol. Soc. 5: 272277.Google Scholar
Nebeker, A. V. 1971. Effect of high winter water temperatures on adult emergence of aquatic insects. Water Res. 5: 777783.Google Scholar
Nebeker, A.V., and Lemke, A.E.. 1968. Preliminary studies on the tolerance of aquatic insects to heated waters. J. Kans. ent. Soc. 41: 413418.Google Scholar
Nemenz, H. 1960. On the osmotic regulation of the larvae of Ephydra cinerea. J. Insect Physiol. 4: 3844.Google Scholar
Nicholls, S.P. 1983. Ionic and osmotic regulation of the haemolymph of the dragonfly, Libellula quadrimaculata (Odonata: Libellulidae). J. Insect Physiol. 29: 541546.Google Scholar
Norling, U. 1984. Life history patterns in the northern expansion of dragonflies. Adv. Odonatol. 2: 127156.Google Scholar
Power, M.E., Stout, R.J., Cushing, C.E., Harper, P.P., Hauer, F.R., Matthews, W.J., Moyle, P.B., Statzner, B., and Wais de Badgen, I.R.. 1988. Biotic and abiotic controls in river and stream communities. J. N. Am. benthol. Soc. 7: 456479.Google Scholar
Pritchard, G. 1971. Argia vivida Hagen (Odonata: Coenagrionidae) in hot pools at Banff. Can. Fid Nat. 85: 187188.Google Scholar
Pritchard, G. 1980. The life cycle of Argia vivida Hagen in the northern part of its range (Zygoptera: Coenagrionidae). Odonatologica 9: 101106.Google Scholar
Pritchard, G. 1982. Life-history strategies in dragonflies and the colonization of North America by the genus Argia (Odonata: Coenagrionidae). Adv. Odonatol. 1: 227241.Google Scholar
Pritchard, G. 1988. Dragonflies of the Cave and Basin hot springs, Banff National Park, Alberta, Canada. Notul. odonatol. 3: 89.Google Scholar
Pritchard, G. 1989. The roles of temperature and diapause in the life history of a temperate-zone dragonfly: Argia vivida (Odonata: Coenagrionidae). Ecol. Ent. 14: 99108.Google Scholar
Pritchard, G., and Leggott, M.A.. 1987. Temperature, incubation rates and origins of dragonflies. Adv. Odonatol. 3: 121126.Google Scholar
Pritchard, G., and Mutch, R.A. 1985. Temperature, development rates and origins of mosquitoes, pp. 237249in Lounibos, L.P., Rey, J.R., and Frank, J.H. (Eds.), Ecology of Mosquitoes: Proceedings of a Workshop. Florida Medical Entomology Laboratory, Vero Beach, FL.Google Scholar
Pritchard, G., and Pelchat, B.. 1977. Larval growth and development of Argia vivida (Odonata: Coenagrionidae) in warm sulphur pools at Banff, Alberta. Can. Ent. 109: 15631570.Google Scholar
Provonsha, A.V., and McCafferty, W.P.. 1977. Odonata from Hot Brook, South Dakota with notes on their distribution patterns. Ent. News 88: 2328.Google Scholar
Ramsey, J.A. 1950. Osmotic regulation in mosquito larvae. J. exp. Biol. 27: 145157.Google Scholar
Rawson, D.S., and Moore, J.E.. 1944. The saline lakes of Saskatchewan. Can. J. Res. D 22: 141201.Google Scholar
Resh, V.H., and Barnby, M.A.. 1984. Distribution of shore bugs and shore flies at Sylvan Springs, Yellowstone National Park. Gt Basin Nat. 44: 99103.Google Scholar
Resh, V.H., and Barnby, M.A.. 1987. Distribution of the Wilbur Springs shore bug (Hemiptera: Saldidae): A product of abiotic tolerances and biotic constraints. Environ. Ent. 16: 10871091.Google Scholar
Resh, V.H., and Sorg, K.L.. 1983. Distribution of the Wilbur Springs shore bug (Hemiptera: Saldidae): Predicting occurrence using water chemistry parameters. Environ. Ent. 12: 16281635.Google Scholar
Robinson, W.H., and Turner, E.C.. 1975. Insect fauna of some Virginia thermal springs. Proc. ent. Soc. Wash. 77: 391398.Google Scholar
Rodgers, E.B. 1980. Effects of elevated temperatures on macroinvertebrate populations in the Browns Ferry Experimental Ecosystems, pp. 684702in Giesy, J.P. (Ed.), Microcosms in Ecological Research. DOE Symposium Series, vol. 52, Augusta, GA.Google Scholar
Rupprecht, R. 1975. The dependence of emergence-period in insect larvae on water temperature. Verh. int. Verein. theor. angew. Limnol. 19: 30573063.Google Scholar
Schott, R.J., and Brusven, M.A.. 1980. The ecology and electrophoretic analysis of the damselfly Argia vivida Hagen, living in a geothermal gradient. Hydrobiologia 69: 261265.Google Scholar
Sibley, R.M., and Calow, P.. 1989. A life-cycle theory of responses to stress. Biol. J. Linn. Soc. 37: 101116.Google Scholar
Southwood, T.R.E. 1977. Habitat, the templet for ecological strategies? J. anim. Ecol. 46: 337365.Google Scholar
Southwood, T.R.E. 1988. Tactics, strategies and templets. Oikos 52: 318.Google Scholar
Starmühlner, F. 1969. Beitrage zur kenntnis der Biozönosen islandischer Thermalgewässer. Sitz. Ber. Ost. Akad. wiss. Math. Nat. Kl. Abt. I, 178: 83173.Google Scholar
Stobbart, R.H., and Shaw, J.. 1974. Salt and water balance: Excretion, pp. 362446in Rockstein, M. (Ed.), Physiology of Insecta, vol. 5. Academic Press, New York, NY.Google Scholar
Stockner, J.G. 1968. Algal growth and primary productivity in a thermal stream. J. Fish. Res. Bd Can. 25: 20372058.Google Scholar
Stockner, J.G. 1971. Ecological energetics and natural history of Hedriodiscus truquii (Diptera) in two thermal spring communities. J. Fish. Res. Bd Can. 28: 7394.Google Scholar
Sutcliffe, D.W. 1960. Osmotic regulation in some euryhaline Diptera. Nature, Lond. 187: 331332.Google Scholar
Tones, P.I. 1978. Osmoregulation in adults and larvae of Hygrotus salinarius Wallis (Coleoptera, Dytiscidae). Comp. Biochem. Physiol. 60: 247250.Google Scholar
Tones, P.I., and Hammer, U.T.. 1975. Osmoregulation in Trichocorixa verticalis interiores (Sailer) (Hemiptera — Corixidae), an inhabitant of Saskatchewan saline lakes. Can. J. Zool. 53: 12071212.Google Scholar
Tuxen, S.L. 1944. The hot springs, their animal communities and their zoogeographical significance, pp. 1216in The Zoology of Iceland, Vol. I, Part II. Einer Munksgard, Copenhagen.Google Scholar
Underwood, A.J. 1989. The analysis of stress in natural populations. Biol. J. Linn. Soc. 37: 5178.Google Scholar
van Everdingen, R.O. 1972. Thermal and mineral springs of the southern Rocky Mountains of Canada. Environment Canada, Ottawa.Google Scholar
Vannote, R.L., and Sweeney, B.W.. 1980. Geographic analysis of thermal equilibria: A conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Am. Nat. 115: 667695.Google Scholar
Vincent, E.R. 1967. A comparison of riffle insect populations in the Gibbon River above and below the Geyser Basins, Yellowstone National Park. Limnol. Oceanogr. 12: 1826.Google Scholar
Walker, E.M. 1953. The Odonata of Canada and Alaska, Vol. I. University of Toronto Press, Toronto, Ont.Google Scholar
Ward, J.V., and Stanford, J.A.. 1982. Thermal responses in the evolutionary ecology of aquatic insects. A. Rev. Ent. 27: 97117.Google Scholar
Waring, G.A., Blankenship, R.R., and Bentall, R.. 1965. Thermal springs of the United States and other countries of the world — a summary. Geol. Surv. Prof. Pap. 492. U.S. Govern. Printing Office, Washington, DC.Google Scholar
Waringer, J.A., and Humpesch, U.H.. 1984. Embryonic development, larval growth and life cycle of Coenagrion puella (Odonata: Zygoptera) from an Austrian pond. Freshwat. Biol. 14: 385399.Google Scholar
Water Survey of Canada. 1975. Compilation of hydrometeorological record — Marmot Creek Basin, Vol. 11. Water Survey of Canada, Calgary, Alta.Google Scholar
White, D.E. 1957 a. Thermal waters of volcanic origin. Bull. Geol. Soc. Am. 68: 16371658.Google Scholar
White, D.E. 1957 b. Magmatic, connate, and metamorphic waters. Bull. Geol. Soc. Am. 68: 16591682.Google Scholar
Whitney, R.J. 1939. The thermal resistance of mayfly nymphs from ponds and streams. J. exp. Biol. 16: 374386.Google Scholar
Wiegert, R.G. 1973. A general ecological model and its use in simulating algal-fly energetics in a thermal spring community, pp. 85102in Geier, P.W., Clark, L.R., Anderson, D.J., and Nix, H.A. (Eds.), Insects: Studies in Population Management. Ecology Society of Australia (Memoirs 1), Canberra.Google Scholar
Wiegert, R.G., and Mitchell, R.. 1973. Ecology of Yellowstone thermal effluent systems: Intersects of blue-green algae, grazing flies (Paracoenia, Ephydridae) and water mites (Partnuniella, Hydrachnellae). Hydrobiologia 41: 251271.Google Scholar
Wiggins, G.B. 1977. Larvae of the North American caddisfly genera (Trichoptera). University of Toronto Press, Toronto, Ont.Google Scholar
Williams, D.D. 1991. Life history traits of aquatic arthropods in springs, pp. 63–87 in Williams, D.D., and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Winterbourn, M.J. 1968. The faunas of thermal waters in New Zealand. Tuatara 16: 111122.Google Scholar
Winterbourn, M.J. 1969. The distribution of algae and insects in hot spring thermal gradients at Waimangu, New Zealand. N.Z. J. mar. freshwat. Res. 3: 459465.Google Scholar
Winterbourn, M.J., and Brown, T.J.. 1967. Observations on the faunas of two warm streams in the Taupo thermal region. N.Z. J. mar. freshwat. Res. 1: 3850.Google Scholar
Wirth, W.W. 1971. The brine flies of the genus Ephydra in North America (Diptera: Ephydridae). Ann. ent. Soc. Am. 64: 357377.Google Scholar
Wirth, W.W., and Mathis, W.. 1979. A review of the Ephydridae (Diptera) living in thermal springs, pp. 2145in Deonier, D.L. (Ed.), 1st Symposium on Systematics and Ecology of Ephydridae. North American Benthological Society.Google Scholar