Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-18T08:00:26.741Z Has data issue: false hasContentIssue false

MITOCHONDRIAL DNA PHYLOGENY OF THE PAPILIO MACHAON SPECIES GROUP (LEPIDOPTERA: PAPILIONIDAE)

Published online by Cambridge University Press:  31 May 2012

Felix A.H. Sperling*
Affiliation:
Section of Ecology and Systematics, Corson Hall, Cornell University, Ithaca, New York, USA 14853–2701
Get access

Abstract

In swallowtail butterflies of the Papilio machaon species group, mitochondrial (mt) DNA divergence has allowed speciation and adaptation to be understood more precisely. The reconstructed phylogeny of mtDNA of the P. machaon group is largely congruent with prior systematic hypotheses based on allozymes and color pattern. Genetic divergences of mtDNA support use of broad, character-based species concepts for the P. machaon group, and allow inferences regarding the origin of hybrid populations. The mtDNA phylogeny provides a guide for evolutionarily appropriate comparisons in studies of the chemical and genetic basis of hostplant use. Finally, mtDNA demonstrates the phylogenetically distinct status of an endangered species, P. hospiton.

Résumé

Chez les papillons porte-queues du groupe d'espèces Papilio machaon, l'analyse de l'ADN mitochondrial (ADNmt) a mis en lumière des divergences qui permettent de mieux comprendre les phénomènes de spéciation et d'adaptation. La phylogénie reconstruite à partir de l'ADNmt chez le groupe P. machaon correspond en grande partie aux hypothèses systématiques antérieures basées sur les allozymes ou sur la coloration. Les divergences génétiques établies par analyse de l'ADNmt démontrent l'avantage d'utiliser des définitions d'espèces à sens large basées sur des caractères au sein du groupe P. machaon et permettent de poser certaines hypothèses sur l'origine des populations hybrides. La phylogénie basée sur l'ADNmt fournit les lignes directrices qui permettront de faire des comparaisons évolutives appropriées lors de l'étude des aspects chimiques et génétiques qui régissent l'utilisation de plantes hôtes. Enfin, l'analyse de l'ADNmt a mis en lumière le statut phylogénétique distinct de l'espèce menacée P. hospiton. [Traduit par la rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5.

References

Ae, S.A. 1979. The phylogeny of some Papilio species based on interspecific hybridization data. Syst. Ent. 4: 116.Google Scholar
Aubert, J., and Solignac, M.. 1990. Experimental evidence for mitochondrial DNA introgression between Drosophila species. Evolution 44: 12721282.Google Scholar
Avise, J.C. 1989. Gene trees and organismal histories: A phylogenetic approach to population biology. Evolution 43: 11921208.Google Scholar
Berenbaum, M.R. 1983. Coumarins and caterpillars: A case for coevolution. Evolution 37: 163179.Google Scholar
Berenbaum, M.R. 1990. Evolution of specialization in insect-umbellifer associations. A. Rev. Ent. 35: 319343.Google Scholar
Berenbaum, M., and Feeny, P.. 1981. Toxicity of angular furanocoumarins to swallowtail butterflies: Escalation in a coevolutionary arms race? Science 212: 927929.Google Scholar
Clarke, C.A. 1967. Prevention of Rh-haemolytic disease. Br. med. J. 4: 712.Google Scholar
Clarke, C.A., and Larsen, T.B.. 1986. Speciation problems in the Papilio machaon species group of butterflies (Lepidoptera: Papilionidae). Syst. Ent. 11: 175181.Google Scholar
Clarke, C. A., and Sheppard, P.M.. 1960. The evolution of dominance under disruptive selection. Heredity 14: 7387.Google Scholar
Codella, S.G. Jr.,, and Lederhouse, R.C.. 1989. Intersexual comparison of mimetic protection in the black swallowtail butterfly, Papilio polyxenes: Experiments with captive blue jay predators. Evolution 43: 410420.Google Scholar
Cohen, M.B., Berenbaum, M.R., and Schuler, M.A.. 1989. Induction of cytochrome P450-mediated detoxification of xanthotoxin in the black swallowtail. J. chem. Ecol. 15: 23472355.Google Scholar
Collins, N.M., and Morris, M.G.. 1985. Threatened Swallowtail Butterflies of the World. International Union for the Conservation of Nature and Natural Resources, Gland, Switzerland. 401 pp.Google Scholar
Coulondre, A. 1987. Observations sur quelques especes diurnes et nocturnes de Corse. Alexanor 15: 3740.Google Scholar
Cracraft, J. 1989. Speciation and its ontology: The empirical consequences of alternative species concepts for understanding patterns and processes of determination, pp. 28–59 in Otte, D., and Endler, J.A. (Eds.), Speciation and its Consequences. Sinauer Associates, Sunderland, MA. 679 pp.Google Scholar
DeSalle, R., Freedman, T., Prager, E.M., and Wilson, A.C.. 1987. Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila. J. molec. Evol. 26: 157164.Google Scholar
Donoghue, M.J. 1989. Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution 43: 11371156.Google Scholar
Ehrlich, P.R., and Raven, P.. 1964. Butterflies and plants: A study in co-evolution. Evolution 18: 586608.Google Scholar
Eimer, G.H.T. 1895. Artbildung und Verwandtschaft bei Schmetterlingen. II. Gustav Fischer Verlag, Jena. 240 pp.Google Scholar
Feeny, P.P. 1991. Chemical constraints on the evolution of swallowtail butterflies, pp. 315–340 in Price, P.W., Lewinsohn, T.M., Fernandes, G.W., and Benson, W.W. (Eds.), Plant–Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. John Wiley and Sons, London. 639 pp.Google Scholar
Feeny, P., Rosenberry, L., and Carter, M.. 1983. Chemical aspects of oviposition behavior in butterflies, pp. 27–76 in Ahmad, S. (Ed.), Herbivorous Insects: Host-seeking Behavior and Mechanisms. Academic Press, New York, NY. 257 pp.Google Scholar
Feinberg, A.P., and Vogelstein, B.. 1983. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 613.Google Scholar
Ferris, S.D., Sage, R.D., Huang, C.H., Nielsen, J.T., Ritte, U., and Wilson, A.C.. 1983. Flow of mitochondrial DNA across a species boundary. Proc. natn. Acad. Sci. U.S.A. 80: 22902294.Google Scholar
Hancock, D.L. 1983. Classification of the Papilionidae (Lepidoptera): A phylogenetic approach. Smithersia 2: 148.Google Scholar
Harrison, R.G. 1989. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol. Evol. 4: 611.Google Scholar
Harrison, R.G., Rand, D.M., and Wheeler, W.C.. 1987. Mitochondrial DNA variation in field crickets across a narrow hybrid zone. Molec. Biol. Evol. 4: 144158.Google Scholar
Hartl, D.L., and Clarke, A.G.. 1989. Principles of Population Genetics, 2nd ed. Sinauer Associates, Sunderland, MA.Google Scholar
Heitzman, J.R. 1973. A new species of Papilio from the Eastern United States (Papilionidae). J. Res. Lepid. 12: 110.Google Scholar
Irwin, D.M., Kocher, T.D., and Wilson, A.C.. 1991. Evolution of the cytochrome b gene of mammals. J. molec. Evol. 32: 128144.Google Scholar
Jordan, K. 1896. On mechanical selection and other problems. Novitates zool. 3: 426525.Google Scholar
Maniatis, T., Fritsch, E.F., and Sambrook, J.. 1982. Molecular Cloning. Cold Spring Harbor Laboratory, MA. 545 pp.Google Scholar
May, R.M. 1990. Taxonomy as destiny. Nature 347: 129130.Google Scholar
Mayr, E. 1969. Principles of Systematic Zoology. McGraw Hill, New York, NY. 428 pp.Google Scholar
McCorkle, D.V., and Hammond, P.C.. 1990. Genetic experiments with a calverleyi-like mutation isolated from Papilio bairdii oregonius (Papilionidae). J. Res. Lepid. 27: 186191.Google Scholar
Munroe, E. 1961. The classification of the Papilionidae (Lepidoptera). Can. Ent. Suppl. 17: 151.Google Scholar
Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York, NY. 512 pp.Google Scholar
Nei, M., and Tajima, F.. 1983. Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics 105: 207217.Google Scholar
Nixon, K.C., and Wheeler, Q.D.. 1990. An amplification of the phylogenetic species concept. Cladisticsd: 211224.Google Scholar
Pamilo, P., and Nei, M.. 1988. Relationships between gene trees and species trees. Molec. Biol. Evol. 5: 568583.Google Scholar
Remington, C.L. 1968. A new sibling Papilio from the Rocky Mountains, with genetic and biological notes (Insecta: Lepidoptera). Postilla 119: 140.Google Scholar
Rice, W.R. 1987. Speciation via habitat specialization: The evolution of reproductive character isolation as a correlated character. Evol. Ecol. 1: 315330.Google Scholar
Sanderson, M.J., and Donoghue, M.J.. 1989. Patterns of variation in levels of homoplasy. Evolution 43: 17811795.Google Scholar
Sillén-Tullberg, B. 1988. Evolution of gregariousness in aposematic butterfly larvae: A phylogenetic analysis. Evolution 42: 293305.Google Scholar
Sperling, F.A.H. 1987. Evolution of the Papilio machaon species group in western Canada. Quaest. ent. 23: 198315.Google Scholar
Sperling, F.A.H. 1990. Natural hybrids of Papilio: Poor taxonomy or interesting evolutionary phenomenon? Can. J. Zool. 68: 17901799.Google Scholar
Sperling, F.A.H. 1991. Mitochondrial DNA phylogeny, Speciation, and Hostplant Coevolution of Papilio Butterflies. Ph.D. dissertation, Cornell University, Ithaca, NY. 132 pp.Google Scholar
Sperling, F.A.H., and Feeny, P.P.. 1993. Umbellifer and composite feeding in Papilio: Phylogenetic frameworks and caterpiller constraints. In Scriber, J.M., Tsubaki, Y., and Lederhouse, R.C. (Eds.), Ecology and Evolutionary Biology of the Papilionidae. Cornell University Press, Ithaca, NY. In press.Google Scholar
Stellwag, E.J., and Dahlberg, A.E.. 1980. Electrophoretic transfer of DNA, RNA, and protein onto diazobenzylmethyl(DMB)-paper. Nucleic Acids Res. 8: 299317.Google Scholar
Strobino, R. 1970. Observations concernant Papilio hospiton Gene en Corse, et ses hybrides naturels avec P. machaon L. Entomops 19: 103112.Google Scholar
Swofford, D.L. 1990. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.0. Computer program distributed by the Illinois Natural History Survey, Champaign, IL. 121 pp.Google Scholar
Templeton, A.R. 1989. The meaning of species and speciation: A genetic perspective, pp. 3–27 in Otte, D., and Endler, J.A. (Eds.), Speciation and its Consequences. Sinauer Associates, Sunderland, MA. 679 pp.Google Scholar
Thompson, J.N. 1988 a. Variation in preference and specificity in monophagous and oligophagous swallowtail butterflies. Evolution 41: 118128.Google Scholar
Thompson, J.N. 1988 b. Evolutionary genetics of oviposition preference in swallowtail butterflies. Evolution 42: 12231235.Google Scholar
Thompson, J.N., Wchling, W., and Podolsky, R.. 1990. Evolutionary genetics of host use in swallowtail butterflies. Nature 344: 148150.Google Scholar
Wheeler, W.C., and Honeycutt, R.L.. 1988. Paired structure difference in ribosomal RNAs: Evolutionary and phylogenetic implications. Molec. Biol. Evol. 5: 9096.Google Scholar