Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T11:24:31.305Z Has data issue: false hasContentIssue false

The ageing of sesquioxide gels. II. Alumina gels

Published online by Cambridge University Press:  14 March 2018

R. C. Mackenzie
Affiliation:
The Macaulay Institute for Soil Research, Aberdeen, Scotland
R. Meldau
Affiliation:
Carl-Bertelsmannstrasse 4, Gütersloh, Germany
J. A. Gard
Affiliation:
Department of Chemistry, University of Aberdeen, Scotland

Summary

Aluminium oxides occur widely in soils and are of considerable pedological significance. The ageing of alumina gels, prepared from aluminium chloride and ammonia, into crystalline hydroxides has been investigated using thermal, X-ray, infra-red, and electron-microscope techniques. At room temperature ageing is more rapid at high pH values. The structure of the original gel particles appears to resemble boehmite and ageing causes the formation of bayerite with small amounts of gibbsite. The morphology of the various mineral types is considered and a mechanism of ageing suggested.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bye, (G.C.) and Robinson, (J.G.), 1961. Chemistry and Industry, p. 1363.Google Scholar
Kraut, (H.) and HummE, (H.), 1931.Ber. deutsch, chem. Gesell., vol. 64, p. 1697.CrossRefGoogle Scholar
Mackenzie, (R.C.), 1957. The Differential Thermal Investigation of Clays (R. C. Mackenzie, editor). Mineralogical Society, London, p. 299.Google Scholar
Mackenzie, (R.C.), and Meldau, (R.), 1959.Min. Mag., vol. 32, p. 153.Google Scholar
Milligan, (W.O.) and Mcatee, (J.L.), 1952. Problems of Clay and Laterite Genesis (W. O. Milligan, editor). A.I.M.E., New York, p. 94.Google Scholar
Moscou, (L.) and Vlies (G. S. van der), 1959.Kolloidzeitseh., vol. 163, p. 35.Google Scholar
Nordstrand, (R. A. van), Hettinger, (W.P.), and Keith, (C.D.), 1956 Nature vol 177, p. 173.Google Scholar
Sawamura, (H.), 1952.Journ. Sci. Res. Inst., Tokyo, vol. 46, p. 15.Google Scholar
SchmäH, (H.), 1946.Zeitsch. Naturforsch., vol. 1, p. 323.Google Scholar
[Shabalina, (O.K.), Derevyankin, (V.A.), and Kuznetsov, (S.I.)]. Шaϭaлиa (O. Ҡ.), Дepeвянҡин, (B.A.), и Ҡyɜнeдoв (C. И.), 1960.ЖypH. Πpиҡл. XиM. [Journ. Appl. Chem.], vol. 33, p. 2774.Google Scholar
Souza, Santos (P.), Vallejo Freire, (A.), and Souza Santos, (H.L.), 1953.Kolloidzeitsch., vol. 133, p. 101.Google Scholar
Suzuki, (S.), 1958.Ibid, vol. 156, p.67.Google Scholar
Suzuki, (S.), 1959.Ibid., vol. 165, p. 168.Google Scholar
Watson, (J. H. L.), Parsons, (J.), Vallejo Freire, (A.), and Souza Santos, (P.), 1955.Ibid., vol. 140, p. 102.Google Scholar
Weiser, (H.B.), Millman, (W.O.), and Purcell (W. I:∼.), 1941.Indust. Eng. Chem. (Industr.), vol. 33, p. 669.Google Scholar