Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T04:25:02.961Z Has data issue: false hasContentIssue false

Aluminopyracmonite, (NH4)3Al(SO4)3, a new ammonium aluminium sulfate from La Fossa crater, Vulcano, Aeolian Islands, Italy

Published online by Cambridge University Press:  05 July 2018

F. Demartin*
Affiliation:
Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, I-20133 Milan, Italy
C. Castellano
Affiliation:
Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, I-20133 Milan, Italy
I. Campostrini
Affiliation:
Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, I-20133 Milan, Italy

Abstract

The new mineral aluminopyracmonite, ideally (NH4)3Al(SO4)3, was found in a medium-temperature (∼250°C) intracrater active fumarole at La Fossa crater, Vulcano, Aeolian Islands, Sicily, Italy. It occurs on a pyroclastic breccia as colourless to white prismatic crystals up to 0.2 mm long, in association with adranosite, mascagnite, alunite and salammoniac. The mineral is identical to the synthetic compound (NH4)3Al(SO4)3. It is trigonal, space group: R (no. 148) with a = 15.0324(8), c = 8.8776(5) 5, V = 1737.3(2) Å3 and Z = 6. The six strongest reflections in the X-ray powder diffraction pattern are: [dobs in Å (I)(hkl)] 3.336(100)(131), 7.469(62)(1 1 0), 3.288(60)(122), 4.289(45)(31), 2.824(29)(51), 4.187(27) (012). The empirical formula based on 12 anions is [(NH4)2.89K0.10]Σ 2.99(Al1.18Fe0.01)Σ 1.19S2.91O12, and the simplified formula (NH4,K)3Al(SO4)3. The measured density is 2.12(1) g/cm3, calculated density 2.143 g/cm3. The mineral is uniaxial(–) with ω = 1.545(3) and ε = 1.532(3) (λ = 589 nm). Using single-crystal diffraction data, the structure was refined to a final R(F) = 0.0258 for 998 independent observed reflections [I > 2σ(I)]. In spite of having unitcell parameters comparable with those of pyracmonite, the two minerals are not isostructural; the difference is related to a disordered conformation of the sulfate anions about the two independent Al3+ ions in aluminopyracmonite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boujelben, M., Toumi, M. and Mhiri, T. (2008) X-ray structure determination of NH4Al(SO4)2 . Annales de Chimie – Science de Materiaux, 33, 379386.CrossRefGoogle Scholar
Bruker, (2001) SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Campostrini, I., Demartin, F., Gramaccioli, C.M. and Russo, M. (2011) Vulcano. Tre secoli di mineralogia. Associazione Micro-mineralogica Italiana, Cremona, Italy, 344 pp,, ISBN 978-88-905541-0-0.Google Scholar
Dahmen, T. and Gruehn, R. (1993) Beitraege zum thermischen verhalten von Sulfaten. IX. Einkristallstrukturverfeinerung der Metall(III)-sulfate Cr2(SO4)3 und Al2(SO4)3 . Zeitschrift für Kristallographie, 204, 5765.Google Scholar
Demartin, F., Gramaccioli, C.M., Campostrini, I. and Pilati T. (2010a) Aiolosite, Na2(Na2Bi)(SO4)3Cl, a new sulfate isotypic to apatite from La Fossa Crater, Vulcano, Aeolian Islands, Italy. American Mineralogist, 95, 382385.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2010b) Pyracmonite, (NH4)3Fe(SO4)3, a new ammonium iron sulfate from La Fossa Crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 48, 307313.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2010c) Adranosite, (NH4)4NaAl2(SO4)4Cl(OH)2, a new ammonium sulfate chloride from La Fossa Crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 48, 315321.CrossRefGoogle Scholar
Demartin, F., Castellano, C., Gramaccioli, C.M. and Campostrini, I. (2010d) Aluminum/iron substitution, hydrogen bonding and a novel structural type in coquimbite- l ike minerals. The Canadian Mineralogist, 48, 323333.CrossRefGoogle Scholar
Demartin, F., Castellano, C., Gramaccioli, C.M. and Campostrini, I. (2010e) Aluminocoquimbite, AlFe(SO4)3·9H2O, a new aluminum iron sulfate from Grotta dell’Allume, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 48, 14651468.CrossRefGoogle Scholar
Demartin, F., Gramaccioli, C.M., Campostrini, I. and Castellano, C. (2011) Cossaite, (Mg0.5, □)Al6(SO4)6 (HSO4)F6·36H2O, a new mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy. Mineralogical Magazine, 75, 28472855.CrossRefGoogle Scholar
Demartin, F., Campostrini, I., Castellano, C., Gramaccioli, C.M. and Russo, M. (2012) D’ansite- (Mn), Na21Mn2+(SO4)10Cl3 and d’ansite-(Fe), Na21Fe2+(SO4)10Cl3, two new minerals from volcanic fumaroles. Mineralogical Magazine, 76, 27732783.CrossRefGoogle Scholar
Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837838.CrossRefGoogle Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1112. in Sulfate Minerals-Crystallography, Geochemistry, and Environmental Significance (Alpers, C.N., Jambor, J.L. and Nordstrom, B.K., editors). Reviews in Mineralogy and Geochemistry, 40, Mineralogical Society of America & Geochemical Society, Washington, D.C. Google Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Jolibois, B., Laplace, G., Abraham, F. and Nowogrocki, G. (1981) Monoclinic-trigonal transition in some MI 3M’III(XO4)3 compounds: the high temperature form of (NH4)3In(SO4)3 . Journal of Solid State Chemistry, 40, 6974.CrossRefGoogle Scholar
Khan, A.A. and Baur, W.H. (1972) Salt hydrates. VIII. The crystal structures of sodium ammonium orthochromate dihydrate and magnesium diammonium bis(hydrogen orthophosphate) tetrahydrate and a discussion of the ammonium ion. Acta Crystallographica, B28, 683693.CrossRefGoogle Scholar
Majzlan, J. and Michallik, R. (2007) The crystal structures, solid solutions and infrared spectra of copiapite-group minerals. Mineralogical Magazine, 71, 557573.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV. The compatibility index and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Scordari, F. (1977) The crystal structure of ferrinatrite, Na3(H2O)3[Fe(SO4)3] and its relationship to Maus’s salt, (H3O)2K2{K0.5(H2O)0.5}6[Fe3O(H2O)3 (SO4)6](OH)2 . Mineralogical Magazine, 41, 375383.CrossRefGoogle Scholar
Scordari, F. and Ventruti, G. (2009) Sideronatrite, Na2Fe(SO4)2(OH)·3H2O: Crystal structure of the orthorhombic polytype and OD character analysis. American Mineralogist, 94, 16791686.CrossRefGoogle Scholar
Shcherbakova, Y.P., Bazhenova, L.F. and Chesnokov, B.V. (1988) Godovikovite – NH4(Al,Fe)(SO4)2, a new ammonium-bearing sulfate. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 117, 208211.Google Scholar
Sheldrick, G.M. (2000) SADABS Area-Detector Absorption Correction Program, Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Supplementary material: PDF

Demartin et al. supplementary material

Structure factors

Download Demartin et al. supplementary material(PDF)
PDF 35.9 KB