Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T14:31:03.824Z Has data issue: false hasContentIssue false

Alumolukrahnite, CaCu2+Al(AsO4)2(OH)(H2O), the aluminium analogue of lukrahnite from the Jote mine, Copiapó Province, Chile

Published online by Cambridge University Press:  28 December 2022

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Stuart J. Mills
Affiliation:
Geosciences, Museums Victoria, GPO Box 666, Melbourne 3001, Australia
Barbara P. Nash
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah 84112, USA
Maurizio Dini
Affiliation:
Central University of Chile, La Serena, Chile
Arturo A. Molina Donoso
Affiliation:
Chilean Minerals, Iquique, Chile
*
*Author for correspondence: Anthony R. Kampf, Email: akampf@nhm.org

Abstract

The new mineral alumolukrahnite (IMA2022–059), CaCu2+Al(AsO4)2(OH)(H2O), was found at the Jote mine, Copiapó Province, Chile, where it is a secondary alteration phase associated with conichalcite, coronadite, gypsum, olivenite, pharmacosiderite, rruffite and scorodite. Alumolukrahnite occurs as crude diamond-shaped tablets up to ~0.1 mm, intergrown in crude spherical aggregates. Crystals are apple green and transparent to translucent, with vitreous lustre and a white streak. The Mohs hardness is 3½. The mineral is brittle with irregular fracture and no cleavage. The calculated density is 4.094 g cm–3. Optically, alumolukrahnite is biaxial (+) with α = 1.73(1), β = 1.74(1) and γ = 1.76(1) (white light). The empirical formula, determined from electron microprobe analyses, is Ca1.01(Cu0.92Zn0.13)Σ1.05(Al0.96Fe0.01)Σ0.97(As0.985O4)2(OH)0.88(H2O)1.12. Alumolukrahnite is triclinic, P$\bar{1}$, a = 5.343(5), b = 5.501(5), c = 7.329(5) Å, α = 67.72(2), β = 69.06(2), γ = 69.42(2)°, V = 180.3(3) Å3 and Z = 1. Alumolukrahnite is a member of the tsumcorite group and is the Al analogue of lukrahnite.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Irina O Galuskina

References

Donnay, J.H. and Harker, D. (1937) A new law of crystal morphology extending the law of Bravais. American Mineralogist, 22, 446467.Google Scholar
Elliott, P. and Pring, A. (2015) Yancowinnaite, a new mineral from the Kintore Opencut, Broken Hill, New South Wales. Australian Journal of Mineralogy, 17, 7376.Google Scholar
Frost, R.L., Xi, Y. and Palmer, S.J. (2012) Raman spectroscopy of the multianion mineral gartrellite-PbCu(Fe3+,Cu)(AsO4)2(OH,H2O)2. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 89, 9398.Google Scholar
Kampf, A.R., Mills, S.J., Housley, R.M., Rossman, G.R., Nash, B.P., Dini, M. and Jenkins, R.A. (2013) Joteite, Ca2CuAl[AsO4][AsO3(OH)]2(OH)2(H2O)5, a new arsenate with a sheet structure and unconnected acid arsenate groups. Mineralogical Magazine, 77, 28112823.CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J., Nash, B.P., Dini, M. and Molina Donoso, A.A. (2015) Tapiaite, Ca5Al2(AsO4)4(OH)4⋅12H2O, a new mineral from the Jote mine, Tierra Amarilla, Chile. Mineralogical Magazine, 79, 345354.Google Scholar
Kampf, A.R., Mills, S.J., Nash, B., Dini, M. and Molina Donoso, A.A. (2023) Alumolukrahnite, IMA 2022-059. CNMNC Newsletter 70. Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2022.135Google Scholar
Krause, W., Belendorff, K., Bernhardt, H.-J., McCammon, C., Effenberger, H. and Mikenda, W. (1998) Crystal chemistry of the tsumcorite-group minerals. New data on ferrilotharmeyerite, tsumcorite, thometzekite, mounanaite, helmutwinklerite, and a redefinition of gartrellite. European Journal of Mineralogy, 10, 179206.Google Scholar
Krause, W., Blass, G., Bernhardt, H.-J. and Effenberger, H. (2001) Lukrahnite, CaCuFe3+(AsO4)2[(H2O)(OH)], the calcium analogue of gartrellite. Neues Jahrbuch für Mineralogie, Monatshefte, 2001, 481492.Google Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.Google Scholar
Mills, S.J., Christy, A.G. and Favreau, G. (2018) The crystal structure of ceruleite, CuAl4 [AsO4]2(OH)8(H2O)4, from Cap Garonne, France. Mineralogical Magazine, 82, 181187.CrossRefGoogle Scholar
Nickel, E.H., Robinson, B.W., Fitz Gerald, O. and Birch, W.D. (1989) Gartrellite, a new secondary arsenate mineral from Ashburton Downs, W.A. and Broken Hill, N.S.W. Australian Mineralogist, 4, 8389.Google Scholar
Parker, R.L., Salas, R.O. and Perez, G.R. (1963) Geologia de los distritos mineros Checo de Cobre Pampa Larga y Cabeza de Vaca. Instituto de Investigaciones Geologicas, 14, 4042.Google Scholar
Pouchou, J.-L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 3l75 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.Google Scholar
Yang, H., Jenkins, R.A., Downs, R.T., Evans, S.H. and Tait, K.T. (2011) Rruffite, Ca2Cu(AsO4)2⋅2H2O,a new member of the roselite group, from Tierra Amarilla, Chile. The Canadian Mineralogist, 49, 877884.Google Scholar