Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T07:23:43.025Z Has data issue: false hasContentIssue false

Bazirite, BaZrSi3O9, a new mineral from Rockall Island, Inverness-shire, Scotland

Published online by Cambridge University Press:  05 July 2018

B. R. Young
Affiliation:
Petrographical Department, Institute of Geological Sciences, Exhibition Road, London SW7 2DE
J. R. Hawkes
Affiliation:
Petrographical Department, Institute of Geological Sciences, Exhibition Road, London SW7 2DE
R. J. Merriman
Affiliation:
Petrographical Department, Institute of Geological Sciences, Exhibition Road, London SW7 2DE
M. T. Styles
Affiliation:
Petrographical Department, Institute of Geological Sciences, Exhibition Road, London SW7 2DE

Summary

Bazirite, BaZrSi3O9, is one of several late-stage interstitial minerals present in the aegirine-riebeckite granite of Rockall Island. Crystals are hexagonal, probably ¯6m2, colourless, chiefly as anhedral grains. Only forms noted {10¯10} and probably {10¯14}, cleavage {0001} and probably {10¯14}. ‘Low’ and ‘high’ titanium varieties with respective mean compositions: SiO2 39·71%, ZrO2 26·38%, BaO 33·69%, TiO2 0·17%, SnO2 0·06% and SiO2 39·59%, ZrO2 26·12%, BaO 34·12%, TiO2 0·51%, SnO2 0·11%. Low and high refractive index types exist; uniaxial positive with ω = 1·6751±0·0003. ɛ = 1·6850±0·0003 and ω = 1·6813±0·0003, ɛ = 1·691 (deduced); probably due to differences in titanium content. Fluorescence (2537 Å), moderately strong, pale whitish blue. Space group almost certainly P¯6c2. Cell dimensions: low R.I. variety, a = 6·7690±0·0005 Å, c = 10·020±0·001 Å; high R.I. variety, a = 6·7662± 0·0005 Å, c = 10·158±0·0010 Å. Strongest lines are 3·80 Å (100), 2·800 (100), 5·85 (35), 3·38 (35), Z = 2. Dcalc = 3·82. Related minerals, benitoite and pabstite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Galkin (Yu. M.), and Chukhlantsev, (B. G.), 1965. Izv. Akad. Nauk SSR, Neorg. Mater. 2, 529-36.Google Scholar
Gross, (E. B.), Wainwright, (J. E. N.), and Evans, (B. W.), 1965. Am. Mineral. 50, 1164-9.Google Scholar
Hawkes, (J. R.), Merriman, (R. J.), Harding, (R. R.), and Darbyshire, (D. P. F.), 1975. Rep. Inst. Geol. Sci. 75/1, 1551.Google Scholar
Judd, (J. W.), 1897. Trans. R. Irish Acad. 31, 48-58.Google Scholar
Lacroix, (A.), 1921. C.R. Acad. Sci. Paris, 173, 267-73.Google Scholar
Louderback, (G. D.), 1907. Univ. Calif. Publ. Geol. 5, 149-53.Google Scholar
Louderback, (G. D.) 1909. Univ. Calif. Publ. Geol. 5, 331-80.Google Scholar
MacCulloch, (J.), 1814. Trans. Geol. Soc. 2, 392.Google Scholar
Mason, (P. K.), Frost, (M. T.), and Reed, (S. J. B.), 1969. Natl. Phys. Lab. I.M.S. Rep. I.Google Scholar
Masse, (R.) and Durif, (A.), 1973. C.R. Acad. Sci. Paris, 276, Ser. C, 1029-31.Google Scholar
Milton, (C.), Chao, (E. C. T.), Fahey, (J. J.), and Mrose, (M. E.), 1960. Int. Geol. Congress. 2Ist Session (Nor- den), Sec. 21, 17184.Google Scholar
Rase, (D. E.) and Roy, (R.), 1955. Am. Mineral. 40, 542-4.Google Scholar
Robbins, (C. R.) and Levin, (E. M.), 1961. J. Res. NBS, 65A, 127-31.CrossRefGoogle Scholar
Sabine, (P. A.), 1960. Bull. Geol. Surv. G.B. 16, 156-78.Google Scholar
Sweatman, (T. R.) and Long, (J. V. P.), 1969. J. Petrol. 10, 332-76.CrossRefGoogle Scholar
Washington, (H. S.), 1914. Q. J. Geol. Soc. London, 70, 294-302.CrossRefGoogle Scholar
Zachariasen, (W. H.), 1930. Zeit. Kristallogr. 74, 139-146.Google Scholar